Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЕХНИЧЕСКАЯ ДИАГНОСТИКА НА ТРАНСПОРТЕ УП.doc
Скачиваний:
193
Добавлен:
16.02.2016
Размер:
433.66 Кб
Скачать

6.3.6. Показатели технических средств диагностирования

Эффективность ТСД оценивают совокупностью показателей, основными из которых являются показатели надежности, метрологические и массогабаритные.

Показатели надежности ТСД характеризуют:

- вероятность безотказной работы, т.е. вероятность того, что в пределах заданной наработки отказ ТСД не возникает;

- коэффициент готовности Ку представляет собой вероятность того, что ТСД окажутся работоспособными в произвольный момент времени, кроме планируемых периодов, в течение которых использование их по назначению не предусматривается, и характеризует как безотказность, так и ремонтопригодность ТСД.

Метрологические показатели характеризуют точность ТСД, которая в большей степени влияет на инструментальную достоверность. Точность можно определить так называемой мерой точности, которая зависит от погрешности диагностирования.

Мера точности зависит от сложности ТСД и определяются точностью отдельных операций при диагностировании. При постановке диагноза могут быть случайные и систематические погрешности, обусловленные погрешностями измерительного тракта ТСД и нестабильностью метода измерения. Систематические погрешности, характер изменения которых известен, могут быть учтены при выборе допуска на параметры. Случайные погрешности всегда будут вносить неопределенность при оценивании результата диагностирования. Погрешности метода измерения приводят также к ошибкам в оценивании состояния ОД. Иногда кроме статической погрешности следует учитывать и динамическую погрешность измерения, влияние которой весьма существенно при измерении переменной величины. Причем, чем быстрее изменяется параметр, тем больше погрешность измерения в данном интервале времени. Основной вклад в ошибки при постановке диагноза вносят датчики, первичные преобразователи, коммутаторы и элементы измерительного тракта.

Массогабаритные показатели ТСД можно охарактеризовать величиной компактности W=G/V,

где G – масса ТСД; V – занимаемый объем.

Требования минимально возможной стоимости, малой массы, габаритов являются общими для любых технических средств.

6.3.7. Прогнозирование технического состояния автомобиля

Прогнозирование – процесс определения срока или ресурса исправной работы автомобиля до возникновения предельного состояния, т.е. предсказания момента возникновения отказа. Необходимость прогнозирования определяется возможностью управлять техническим состоянием автомобиля в целом, если известны изменения его технического состояния во времени. С помощью прогнозирования можно наиболее полно использовать ресурсы рассматриваемой системы и оптимизировать ее обслуживание как восстанавливаемого объекта эксплуатации. Существующие методы обслуживания по среднестатистическим показателям не дают возможности оптимизировать этот процесс, так как не учитывают индивидуальных особенностей автомобиля. Это приводит к увеличению материальных и трудовых затрат на поддержание автомобиля в технически исправном состоянии и снижению эффективности его использования. Организовать оптимальный процесс обслуживания автомобиля возможно только на базе диагностической информации и прогнозирования ее изменения во времени или по пробегу. Практически прогнозирование состоит в назначении периодичности диагностирования и определении упреждающих диагностических нормативов, которые решаются на базе теории надежности автомобилей. В основе определения периодичности диагностирования и упреждающих диагностических нормативов лежат закономерности технического состояния и экономические показатели.

Прогнозирование изменения технического состояния может проводиться по разнообразным критериям (например, по усталостной прочности, динамике процесса изнашивания, виброакустическим показателям, содержанию элементов изнашивания в масле, показателям стоимости и трудовых затрат и др.).

Методы прогнозирования подразделяются на три основные группы:

1. Методы экспертных оценок, сущность которых сводится к обобщению, статистической обработке и анализу мнений специалистов.

2. Методы моделирования, базирующиеся на основных положениях теории подобия и состоящие из формирования модели объекта исследования, проведения экспериментальных исследований и пересчета полученных значений с модели на натуральный объект.

3. Статистические методы, из которых наибольшее применение находит метод экстраполяции. В его основе лежат закономерности изменения прогнозируемых параметров по времени. Для описания этих закономерностей подбирают по возможности простую аналитическую функцию с минимальным количеством переменных.

Наибольшее распространение получил метод статистического моделирования, когда в качестве базовых материалов используются результаты технической диагностики. В этом случае прогноз следует рассматривать как вероятностную категорию.

Процедурная модель прогнозирования содержит три наиболее общих этапа: ретроспектирование, диагностирование, прогнозирование. Содержание этапов состоит в анализе прошлого, определении настоящего и оценке будущего.

Наиболее важным является прогнозирование остаточного ресурса. К наиболее простым способам, дающим приближенное значение остаточного ресурса, относится линейное прогнозирование. В этом случае изменение параметра в зависимости от наработки принимается линейным. На основе начального (номинального) значения параметра и значения параметра, определяемого диагностированием в момент прогнозирования, расчет остаточного ресурса выполняют по формуле:

lост = l·{(Ппр – Пнач)/(Пl – Пнач) – l},

где lост – остаточный ресурс в километрах пробега;

l – наработка с начала эксплуатации или с момента проведения капитального ремонта;

Пнач, Ппр – начальное и предельное значения параметра;

Пl – значение параметра к моменту определения состояния в целях прогнозирования.

Для сопряжения основных деталей двигателя линейный способ прогнозирования дает несколько завышенную оценку остаточного ресурса.

При отсутствии показателей наработки l с начала эксплуатации линейное прогнозирование можно осуществить по двум измерениям параметра, выполненным в различное время с промежуточной наработкой l.

Более точно, чем линейные зависимости, действительные закономерности изменения параметров могут быть описаны уравнениями типа

Пl = Пнач + а1 ·l + a2·l2 +…+ an·ln,

где Пl – параметр технического состояния;

Пнач – начальное значение параметра;

а1, a2,…an - опытные коэффициенты;

l – текущая наработка.

Большое число опытных коэффициентов и сложность их определения затрудняют использование указанной зависимости. Поэтому при прогнозировании остаточного ресурса применяют уравнение более простого вида:

Пl = Пнач + b·lα,

где b – опытный коэффициент;

ά – показатель степени, характеризующий скорость изменения параметра.

Тогда при известных значениях начального (номинального) и предельного параметров состояния и при измерении диагностического параметра технического состояния в момент прогнозирования остаточный ресурс рассчитывают по формуле:

lост = l {[Ппр – Пнач)/(Пl – Пнач)] - 1},

где lост – остаточный ресурс в километрах пробега;

l – наработка двигателя с начала эксплуатации или с момента проведения ремонта;

Пнач, Ппр – начальное и предельное значение параметра;

Пl – значение параметра к моменту определения состояния в целях прогнозирования.

Значения показателя степени определяют опытным путем.

Рассмотренный способ допускает проведение прогнозирования по измерению одного параметра, а именно – параметра состояния в момент диагноза. Среднее статистическое значение начального параметра принимается по техническим условиям. Колебания фактического значения начального параметра в широких пределах вносят существенную погрешность в определение остаточного ресурса.

Прогнозирование состояния сложных объектов должно выполняться на основе ряда измерений, проведенных по мере увеличения наработки. Оперативность перспективных диагностических методов и средств позволяет реализовать возможности прогнозирования по нескольким диагнозам. Остаточный ресурс по ряду измерений диагностического параметра определяется по формуле:

lост = l {[Ппр – Пнач)/(Пl – Пнач)]-l},

где l – наработка к моменту диагноза с начала эксплуатации;

Пl – значение параметра при наработке l;

Пнач – начальное значение параметра.

Приведенная формула совпадает с предыдущей формулой, когда остаточный ресурс приближенно определяется на основе одного диагноза при наработке l и когда вероятностное значение ά установлено заранее на основе статистических данных. В последнем случае при расчетах остаточного ресурса значение степени ά определяется по сглаженному графику, полученному на основе ряда диагнозов, проводимых в разное время в ходе увеличения наработки l.