Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FINAL (Verdana, 16).docx
Скачиваний:
18
Добавлен:
18.02.2016
Размер:
561.46 Кб
Скачать

29. Проанализируйте различные подходы к защите баз данных. Охарактеризуйте компьютерные и некомпьютерные средства контроля данных.

Для успешной работы с базами данных, в особенности в многопользовательском режиме, любая СУБД должна включать средства защиты данных от несанкционированного доступа. При этом традиционно используются два подхода обеспечения безопасности данных – избирательный и обязательный

В рамках избирательного подхода конкретный пользователь имеет разные права (полномочия) для работы с различными объектами базы данных При обязательном подходе некоторый классификационный уровень присваивается самому объекту, а каждый пользователь имеет свой фиксированный уровень доступа. Для опознания пользователя при его входе в систему СУБД обычно просит ввести идентификатор. ,Это предполагает, что нелегальный пользователь пытается войти в базу данных, используя средства СУБД. Тем не менее возможна ситуация, когда несанкционированные действия реализуются в обход СУБД с помощью копирования фрагмента базы данных или подключения к коммуникационному каналу.

Наиболее надежным способом защиты от таких действий является шифрование данных. Исходные данные шифруются с помощью специального алгоритма шифрования с применением некоторого ключа шифрования. Процедура дешифрирования информации при известном ключе шифрования выполняется достаточно просто. Алгоритм шифрования может быть широко доступен, ключ шифрования обязательно хранится в секрете.

Физические способы защиты основаны на создании физических препятствий для злоумышленника, преграждающих ему путь к защищаемой информации (строгая система пропуска на территорию и в помещения с аппаратурой или с носителями информации). Эти способы дают защиту только от "внешних" злоумышленников и не защищают информацию от тех лиц, которые обладают правом входа в помещение.

31. Охарактеризуйте многомерную модель данных. Продемонстрируйте метод многомерного моделирования для проектирования хранилищ данных.

Моделирование данных — область, преследующая цель структурировать данные в одну аналитическую модель, которая будет эффективно обслуживать потребности бизнеса в отчетности и анализе. Если целью является именно анализ данных, а не выполнение транзакций, используется многомерная модель данных. Технология многомерных баз данных — ключевой фактор интерактивного анализа больших массивов данных с целью поддержки принятия решения. Подобные базы данных трактуют данные как многомерные кубы. Многомерные модели данных имеют три важных области применения, связанных с проблематикой анализа данных: 1. Хранилища данных интегрируют для анализа информации из нескольких источников. 2. Системы оперативной аналитической обработки (online analytical processing — OLAP) позволяют оперативно получить ответы на запросы, охватывающие большие объемы данных в поисках общих тенденций. 3. Приложения добычи данных служат для выявления знаний за счет полуавтоматического поиска ранее неизвестных шаблонов и связей в базах данных.

Многомерные базы данных рассматривают данные как кубы, которые являются обобщением электронных таблиц на любое число измерений. Кубы поддерживают иерархию измерений и формул без дублирования их определений. Набор соответствующих кубов составляет многомерную базу данных. Комбинации значений измерений определяют ячейки куба.

Атрибуты являются квалификаторами измерений в запросах. Например, измерение "Время" (Time) может содержать атрибуты "Год", "Квартал", "Месяц", "Неделя". Атрибуты могут быть организованы в иерархии. Св-ва атрибутов измерения: 1. Имя (Name) определяет имя атрибута в терминах пользователя. 2. Код (Code) определяет техническое имя атрибута, используемое при генерировании скрипта. 3. Комментарий (Comment) определяет дополнительное описание атрибута. 4. Измерение (Dimension) определяет измерение для атрибута.

Факты представляют субъект — некий шаблон или событие, которые необходимо проанализировать; Измерения — коллекции атрибутов, которые в представлении источника данных привязаны к одному или нескольким столбцам таблицы или представления.

Мера — значение из таблицы фактов. Значение в измерении мер часто называют общим термином элемент. Мерами обычно являются числовые значения, но могут быть и строковые.

Иерархия атрибута — иерархия элементов атрибута, содержащая следующие уровни: 1. Конечный уровень, содержащий все отдельные элементы атрибута, и все элементы конечного уровня (конечные элементы). 2. Промежуточные уровни, если иерархия атрибута является иерархией типа «родители-потомки». 3. Необязательный уровень «(Все)» содержащий статистическое значение конечных элементов иерархии атрибута, элемент этого уровня называют элементом «(Все)». Гранулированность - Уровень структуризации или детализации данных. Схема «звезда» – имеются таблицы для каждого измерения, а все факты помещаются в одну таблицу, индексируемую множественным ключом, составленным из ключей отдельных измерений. Концы звезды образуются таблицами измерений, а их с таблицей фактов, расположенной в центре, образуют лучи. В схеме "звезда" каждое измерение куба содержится в одной таблице, в том числе и при наличии нескольких уровней иерархии.Схема «снежинка» – то же, что и схема звезды, но с нормализованными таблицами измерений. При такой структуре БД большинство запросов из области делового анализа объединяют центральную таблицу фактов с одной или несколькими таблицами измерений. Схема "созвездие" – получается из нескольких таблиц фактов. Через консольные или таблицы размерности сообщаются несколько таблиц фактов, отображающих несколько объектов с общими атрибутами. Таблица измерений содержит неизменяемые или редко изменяемые данные. В каждой таблице измерений перечислены возможные значения одного из измерений гиперкуба. По одной записи для каждого члена нижнего уровня иерархии в измерении. Содержат как минимум одно описательное поле и целочисленное ключевое поле (обычно это суррогатный ключ) для однозначной идентификации члена измерения. Каждая таблица измерений должна находиться в отношении "один ко многим" с таблицей фактов. Таблица фактов – основная. Таблицы, которые содержат предварительно вычисленные на основе первичных данных, и для увеличения производительности запросов создаются по наиболее часто используемым измерениям. Содержит сведения об объектах или событиях, совокупность которых будет в дальнейшем анализироваться.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]