Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Чумак ФЧЖ электронный.doc
Скачиваний:
1337
Добавлен:
29.02.2016
Размер:
1.02 Mб
Скачать

Лекция 19. Частная физиология центральной нервной системы

1.Физиология спинного мозга

Спинной мозг представляет собой нервный тяж длиной около 45 см у мужчин и около 42 см у женщин. Он имеет сегментарное строение (31 — 33 сегмента) — каждый его участок связан с определенным метамерным сегментом тела. Спинной мозг анатомически делят на пять отделов: шейный грудной поясничный крестцовый и копчиковый.

Общее число нейронов в спинном мозге приближается к 13 млн. Большинство из них (97 %) являются интернейронами, 3 % относят к эфферентным нейронам.

Эфферентные нейроны спинного мозга, относящиеся к соматической нервной системе, являются мотонейронами. Различают α- и γ-мотонейроны. α-Мотонейроны иннервируют экстрафузальные (рабочие) мышечные волокна скелетных мышц, имеющих высокую скорость проведения возбуждения по аксонам (70—120 м/с, группа А α).

γ-Мотонейроны рассредоточены среди α-мотонейронов, они иннервируют интрафузальные мышечные волокна мышечного веретена (мышечного рецептора).

Их активность регулируется посылками от вышележащих отделов ЦНС. Оба типа мотонейронов участвуют в механизме α- γ-сопряжения. Суть его в том, что при изменении сократительной деятельности интрафузальных волокон под влиянием γ-мотонейронов изменяется активность мышечных рецепторов. Импульсация от мышечных рецепторов активирует α-мото-нейроны «своей» мышцы и тормозит α-мото-нейроны мышцы-антагониста.

В этих рефлексах особо важна роль афферентного звена. Мышечные веретена (мышечные рецепторы) расположены параллельно скелетной мышце своими концами крепятся к соединительнотканной оболочке пучка экстрафузальных мышечных волокон при помощи напоминающих сухожилия полосок. Мышечный рецептор состоит из нескольких поперечнополосатых интрафузальных мышечных волокон, окруженных соединительнотканной капсулой. Вокруг средней части мышечного веретена обвивается несколько раз окончание одного афферентного волокна.

Сухожильные рецепторы (рецепторы Гольджи) заключены в соединительнотканную капсулу и локализуются в сухожилиях скелетных мышц вблизи от сухожильно-мышечного соединения. Рецепторы представляют собой безмиелиновые окончания толстого миелинового афферентного волокна (подойдя к капсуле рецепторов Гольджи, это волокно теряет миелиновую оболочку и делится на несколько окончаний). Сухожильные рецепторы крепятся относительно скелетной мышцы последовательно, что обеспечивает их раздражение при натяжении сухожилия Поэтому сухожильные рецепторы посылают информацию в мозг о том, что мышца сокращена (напряжено и сухожилие), а мышечные рецепторы — что мышца расслаблена и удлинена. Импульсы от сухожильных рецепторов тормозят нейроны своего центра и возбуждают нейроны центра-антагониста (у мышц-сгибателей это возбуждение выражено слабее).

Таким образом регулируются тонус скелетных мышц и двигательные реакции.

Афферентные нейроны соматической нервной системы локализуются в спинномозговых чувствительных узлах. Они имеют т-образные отростки, один конец которых направляется на периферию и образует рецептор в органах, а другой следует в спинной мозг через дорсальный корешок и образует синапс с верхними пластинами серого вещества спинного мозга. Система вставочных нейронов (интернейронов) обеспечивает замыкание рефлекса на сегментарном уровне либо передает импульсы в надсегментарные области ЦНС.

Нейроны симпатической нервной системы являются также вставочными; расположены в боковых рогах грудного, поясничного и частично шейного отделов спинного мозга Они фоново-активны, частота их разрядов 3—5 имп/с. Нейроны парасимпатического отдела вегетативной нервной системы также вставочные, локализуются в сакральном отделе спинного мозга и также фоново-активны.

В спинном мозге находятся центры регуляции большинства внутренних органов и скелетных мышц.

Миотатический и сухожильный рефлексы соматической нервной системы, элементы шагательного рефлекса, управления инспираторными и экспираторными мышцами локализованы здесь.

Спинальные центры симпатического отдела вегетативной нервной системы осуществляют управление зрачковым рефлексом, регулируют деятельности сердца, сосудов, почек, органов пищеварительной системы.

Для спинного мозга характерна проводниковая функция.

Она осуществляется с помощью нисходящих и восходящих путей.

Афферентная информация поступает в спинной мозг через задние корешки, эфферентная импульсация и регуляция функций различных органов и тканей организма осуществляются через передние корешки (закон Белла—Мажанди).

Каждый корешок представляет собой множество нервных волокон. Например, дорсальный корешок кошки включает 12 тыс., а вентральный — 6 тыс. нервных волокон.

Все афферентные входы в спинной мозг несут информацию от трех групп рецепторов:

  1. кожных рецепторов — болевых, температурных, рецепторов прикосновения, давления, вибрации;

  2. проприорецепторов — мышечных (мышечных веретен), сухожильных (рецепторов Гольджи), надкостницы и оболочек суставов;

  3. рецепторов внутренних органов — висцеральных, или интерорецепторов. рефлексов.

В каждом сегменте спинного мозга имеются нейроны, дающие начало восходящим проекциям к вышерасположенным структурам нервной системы. Строение путей Голля, Бурдаха, спиномозжечковый и спиноталамический хорошо освещены в курсе анатомии.

Функции ствола головного мозга.

Головной мозг состоит из конечного мозга (кора большого мозга, белое вещество, базальные ганглии), промежуточного, среднего, заднего (мост и мозжечок) и продолговатого мозга. Часть этих структур определяют понятием «ствол мозга» (продолговатый мозг, мост и средний мозг), совместная деятельность которых формирует основные стволовые функции, например, сложные цепные рефлексы, регуляцию мышечного тонуса и позы, восходящее влияние ретикулярной формации на конечный мозг.

Учебники дают такую трактовку их локализации и выполняемых функций.

В стволе мозга находятся ядра III—XII пар черепных нервов.

III пара Ядра глазодвигательного нерва (п. oculomotorius,) расположены в среднем мозге. Двигательное ядро вызывает сокращение верхней, нижней, внутренней прямых, нижней косой мышц глаза и мышцы, поднимающей верхнее веко, участвуя в глазодвигательных рефлексах. Добавочное (парасимпатическое) ядро, иннервируя сфинктер зрачка и ресничную мышцу, осуществляет рефлексы сужения зрачка и аккомодации глаза.

IV. Ядро блокового нерва (п. trochlearis,) находится в среднем мозге. Иннервируя верхнюю косую мышцу, оно вызывает поворот глазного яблока вниз и кнаружи.

V. Тройничный нерв (п. trigeminus,) имеет двигательное и чувствительные ядра. Двигательное ядро расположено в мосту, иннервирует жевательные мышцы и вызывает движения нижней челюсти (вверх, вниз, в стороны и вперед), а также напрягает мягкое небо и барабанную перепонку. Чувствительные ядра (среднемозговое, мостовое, спинальное) получают от кожи, слизистых оболочек, органов лица и головы тактильную, температурную, висцеральную, проприоцептивную, болевую импульсацию, входят в проводниковый отдел соответствующих анализаторов и участвуют в различных рефлексах (например, жевательном, глотательном, чихательном).

VI. Ядро отводящего нерва (п. abducens), расположено в мосту. Иннервирует наружную прямую мышцу глаза, вызывает поворот его кнаружи.

VII. Ядра лицевого нерва (п. facialis,) находятся в мосту. Двигательное ядро вызывает сокращения мимической и вспомогательной жевательной мускулатуры, регулирует передачу звуковых колебаний в среднем ухе в результате сокращения стременной мышцы. Чувствительное ядро одиночного пути, иннервируя вкусовые луковицы передних зон языка, анализирует вкусовую чувствительность, участвует в моторных и секреторных пищеварительных рефлексах. Верхнее слюноотделительное (парасимпатическое) ядро стимулирует выделение секретов подъязычной, подчелюстной слюнных и слезной желез.

VIII. Чувствительные ядра преддверно-улиткового нерва (п. vestibulocochlearis,) расположены в продолговатом мозге. Вестибулярные ядра, иннервируя рецепторы вестибулярного аппарата, участвуют в регуляции позы и равновесия тела (статические и статокинетические рефлексы), в вестибулоглазных и вестибуло-вегетативных рефлексах, входят в проводниковый отдел вестибулярного анализатора. Улитковые ядра, иннервирующие слуховые рецепторы, участвуют в слуховом ориентировочном рефлексе, входят в проводниковый отдел слухового анализатора.

IX. Ядра языкоглоточного нерва (п. glosso-pharyngeus,) расположены в продолговатом мозге. Двойное (двигательное) ядро вызывает поднимание глотки и гортани, опускание мягкого неба и надгортанника при глотательном рефлексе. Чувствительное ядро одиночного пути получает вкусовую, тактильную, температурную, болевую и интероцептивную чувствительность от слизистой оболочки глотки, задней трети языка, барабанной полости и каротидного тельца, входит в состав соответствующих анализаторов, участвует в рефлексах жевания, глотания, в секреторных и моторных пищеварительных рефлексах, в сосудистых и сердечных рефлексах (из каротидного тельца). Нижнее слюноотделительное (парасимпатическое) ядро стимулирует секрецию околоушной слюнной железы.

X. Ядра блуждающего нерва (п. vagus,) расположены в продолговатом мозге. Двойное (двигательное) ядро, иннервируя мышцы неба, глотки, гортани, участвует в рефлексах глотания, рвоты, чиханья, кашля, в формировании голоса. Чувствительное ядро одиночного пути, иннервируя слизистую оболочку неба, корня языка, дыхательных путей, аортальное тельце, органы шеи, грудной, брюшной полостей, участвует в качестве афферентного звена в глотательном, жевательном, дыхательных, висцеральных рефлексах. Оно входит в проводниковый отдел интероцептивного, вкусового, тактильного, температурного и болевого анализаторов. Заднее (парасимпатическое) ядро, иннервируя сердце, гладкие мышцы и железы органов шеи, грудной и брюшной полостей, участвует в сердечных, легочных, бронхиальных, пищеварительных рефлексах.

XI. Двигательное ядро добавочного нерва (п. accessorius,) расположено в продолговатом и спинном мозге. Иннервируя грудино-ключично-сосцевидную и трапециевидную мышцы, оно вызывает наклон головы набок с поворотом лица в противоположную сторону, поднимание плечевого пояса вверх, приведение лопаток к позвоночнику.

XII. Двигательное ядро подъязычного нерва (п. hypoglossus,) расположено в продолговатом мозге; иннервируя мышцы языка, вызывает его движение в рефлексах жевания, сосания, глотания, в осуществлении речи.

Таким образом, с участием ядер черепных нервов реализуется сенсорная и рефлекторная (соматическая и вегетативная) функции ствола мозга.

Ретикулярная формация (РФ) образована совокупностью нейронов, расположенных в его центральных отделах как диффузно, так и в виде ядер.

Функциональные особенности ретикулярных нейронов.

  • Полисенсорная конвергенция: принимают коллатерали от нескольких сенсорных путей, идущих от разных рецепторов. В основном это полимодальные нейроны, имеющие большие рецепторные поля.

  • У нейронов РФ длительный латентный период ответа на периферическую стимуляцию в связи с проведением возбуждения к ним через многочисленные синапсы.

  • Они имеют фоновую тоническую активность, в покое 5—10 имп/с.

  • Нейроны РФ обладают высокой чувствительностью к некоторым веществам крови (например, к адреналину, СО2).

Восходящие влияния нейронов РФ на большой мозг преимущественно активирующие.

Импульсы ретикулярных нейронов продолговатого мозга (гигантеклеточное, латеральное и вентральное ретикулярные ядра), моста (особенно каудальное ретикулярное ядро) и среднего мозга поступают к неспецифическим ядрам таламуса и после переключения в них проецируются в различные области коры. Кроме таламуса, восходящие влияния следуют также в задний гипоталамус,

Прямое доказательство активирующего влияния РФ по восходящим путям на состояние мозга было получено Г. Мегуном и Дж. Моруцци (1949) в хронических опытах с раздражением РФ через погружные электроды у сонных животных. Стимуляция РФ вызывала пробуждение животного. На ЭЭГ медленные ритмы сменялись высокочастотными ритмами (реакция десинхронизации), свидетельствующими об активированном состоянии коры головного мозга. На основании полу­ченных данных сложилось представление о том, что важнейшей функцией восходящей РФ является регуляция цикла сон/бодрствование и уровня сознания.

Тормозное влияние РФ на большой мозг изучено значительно хуже. Работами В. Гесса (1929), Дж. Моруцци (1941) было показано, что раздражением некоторых точек РФ ствола мозга можно перевести животное из бодрствующего состояния в сонное, при этом на электроэнцефалограмме возникает реакция синхронизации ритмов ЭЭГ.

Вегетативные функции РФ осуществляются через ее влияния на вегетативные центры ствола и спинного мозга. Ретикулярная формация входит в состав жизненно важных центров продолговатого мозга — сердечно-сосудистого и дыхательного.

Проводниковая функция ствола мозга выполняется восходящими и нисходящими путями.

Восходящие пути являются частью проводникового отдела анализаторов, передающих информацию от рецепторов в проекционные зоны коры. В стволе мозга выделяют две восходящие системы — специфическую и неспецифическую.

Специфическую восходящую систему составляет лемнискоталамическии путь, в котором выделяют медиальную и латеральную петли. Медиальная петля образуется преимущественно из аксонов нейронов тонкого (Голля) и клиновидного (Бурдаха) ядер, которые проводят от рецепторов конечностей, туловища и шеи проприоцептивную, тактильную и висцеральную чувствительность.

Неспецифические (экстралемнисковые) восходящие пути — в основном это волокна латерального спиноталамического и спиноретикулярного трактов, проводящих температурную и болевую чувствительность. Неспецифическая система получает коллатеральные волокна от специфической системы, что обеспечивает связь этих двух восходящих систем.

Через ствол мозга проходит начинающийся в четверохолмии тектоспинальный тракт, который обеспечивает двигательные компоненты ориентировочных зрительных и слуховых рефлексов.

Функции промежуточного мозга

Промежуточный мозг (diencephalon) расположен между средним и конечным мозгом, вокруг III желудочка мозга. Он состоит из таламической области и гипоталамуса. Таламическая область включает в себя таламус, метаталамус (коленчатые тела) и эпиталамус (эпифиз).

Таламус.

Таламус (зрительный бугор) представляет собой парный ядерный комплекс, занимающий преимущественно дорсальную часть промежуточного мозга. Таламус составляет основную массу (около 20 г) промежуточного мозга, наибольшее развитие имеет у человека. В таламусе выделяют до 40 парных ядер, которые в функциональном плане можно разделить на следующие три группы: релейные, ассоциативные и неспецифические. Все ядра таламуса в разной степени обладают тремя общими функциями — переключающей, интегративной и модулирующей.

Из релейных ядер наиболее известны функции тех из них, которые входят в анализаторы.

Латеральное коленчатое тело является реле для переключения зрительной импульсации в затылочную кору (в поле 17), где она используется для формирования зрительных ощущений. Кроме корковой проекции, часть зрительной импульсации направляется в верхние бугры четверохолмия. Эта информация используется для регуляции движения глаз, в зрительном ориентировочном рефлексе. Медиальное коленчатое тело является реле для переключения слуховой импульсации в височную кору задней части сильвиевой борозды (извилины Гешля, поля 41, 42).

К ассоциативным ядрам таламуса относятся ядра подушки, медиодорсальное ядро и латеральные ядра — дорсальное и заднее. Волокна к этим ядрам приходят не от проводниковых путей анализаторов, а от других ядер таламуса. Эфферентные выходы от этих ядер направляются главным образом в ассоциативные поля коры. Главной функцией этих ядер является интегративная функция, которая выражается в объединении деятельности как таламических ядер, так и различных зон ассоциативной коры полушарий мозга.

Неспецифические ядра составляют эво-люционно более древнюю часть таламуса, включающую интраламинарную ядерную группу.

Неспецифические ядра имеют многочисленные входы как от других ядер таламуса, так и внеталамические: по латеральному спиноталамическому, спиноретикуло-таламическому трактам

Гипоталамус.

Гипоталамус является вентральной частью промежуточного мозга. Макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. Микроскопически в гипоталамусе выделяют, по данным разных авторов, от 15 до 48 парных ядер, которые подразделяются на 3—5 групп. Многие авторы выделяют в гипоталамусе 4 основные области, включающие в себя несколько ядер

  • преоптическая область — медиальное и латеральное преоптические ядра;

  • передняя область — супрахиазматическое, супраоптическое, паравентрикулярное и переднее гипоталамическое ядра;

  • средняя (или туберальная) область —дорсомедиальное, вентромедиальное, аркуатное (инфундибулярное) и латеральное гипоталамические ядра;

  • задняя область — супрамамиллярное, премамиллярное, латеральное и медиальное мамиллярные ядра, заднее гипоталамическое и перифорниатное ядра, субталамическое ядро Луиса.

Важной физиологической особенностью гипоталамуса является высокая проницаемость его сосудов для различных веществ, в том числе и для крупных полипептидов. Это обусловливает большую чувствительность гипоталамуса к сдвигам во внутренней среде организма и способность реагировать на колебания концентрации гуморальных веществ. В гипоталамусе по сравнению с другими структурами головного мозга имеются самая мощная сеть капилляров (1100—2600 капилляров/мм2) и самый большой уровень локального кровотока.

Ядра гипоталамуса образуют многочисленные связи друг с другом (ассоциативные), с парными одноименными ядрами противоположной стороны (комиссуральные), а также с выше- и нижележащими структурами ЦНС (проекционные). Главные афферентные пути гипоталамуса идут от лимбической системы, коры больших полушарий, базальных ганглиев и ретикулярной формации ствола. Основные эфферентные пути гипоталамуса идут в ствол мозга — его ретикулярную формацию, моторные и вегетативные центры, в вегетативные центры спинного мозга, от мамиллярных тел к передним ядрам таламуса и далее в лимбическую систему, от супраоптического и паравентрикулярного ядер к нейрогипофизу, от вентромедиального и инфундибулярного ядер к аденогипофизу, а также имеются эфферентные выходы к лобной коре и полосатому телу.

Гипоталамус является многофункциональной системой, обладающей широкими регулирующими и интегрирующими влияниями. Однако важнейшие функции гипоталамуса трудно соотнести с его отдельными ядрами. Как правило, отдельно взятое ядро имеет несколько функций, а отдельно взятая функция локализуется в нескольких ядрах. В связи с этим физиология гипоталамуса рассматривается обычно в аспекте функциональной специфики его различных областей и зон.

Гипоталамус является важнейшим центром интеграции вегетативных функций, регуляции эндокринной системы, теплового баланса организма, цикла «бодрствование – сон» и других биоритмов; велика его роль в организации поведения (пищевого, полового, агрессивно-оборонительного), направленного на реализацию биологических потребностей.

Физиология мозжечка

Мозжечок отдел головного мозга, образующий вместе с мостом задний мозг. Составляя 10 % массы головного мозга, мозжечок включает в себя более половины всех нейронов ЦНС. Это свидетельствует о больших возможностях обработки информации и соответствует главной функции мозжечка как органа координации и контроля сложных и автоматизированных движений. В осуществлении этой функции важную роль играют обширные связи мозжечка с другими отделами ЦНС и рецепторным аппаратом.

Выделяют три структуры мозжечка, отражающие эволюцию его функций.

Древний мозжечок (архицеребеллум) состоит из клочка и узелка (флоккулонодулярная доля) и нижней части червя. Он гомологичен мозжечку круглоротых, передвигающихся в воде с помощью змеевидных движений тела.

Старый мозжечок (палеоцеребеллум) включает в себя верхнюю часть червя и парафлоккулярный отдел. Он гомологичен мозжечку рыб, передвигающихся с помощью плавников.

Новый мозжечок (неоцеребеллум) состоит из полушарий и появляется у животных, передвигающихся с помощью конечностей.

Межнейронные связи в коре мозжечка, его афферентные входы и эфферентные выходы многочисленны. Грушевидные нейроны (клетки Пуркинье), образующие средний (ганглиозный) слой коры, являются главной функциональной единицей. Ее структурной основой являются многочисленные ветвящиеся дендриты, на которых в одной клетке может быть до 100 тыс. синапсов. Количество клеток Пуркинье у человека, по разным источникам, — от 7 до 30 млн. Они являются единственными эфферентными нейронами коры мозжечка и непосредственно связывают ее с внутримозжечковыми и вестибулярными ядрами. В связи с этим функциональное влияние мозжечка существенным образом зависит от активности клеток Пуркинье, что в свою очередь связано с афферентными входами этих клеток.

Поскольку клетки Пуркинье являются тормозными нейронами (медиатор ГАМК), то с их помощью кора мозжечка оказывает тормозное эфферентное влияние на мишени иннервации. В мозжечке доминирует тормозный характер управления.

Двигательные функции мозжечка заключаются в регуляции мышечного тонуса, позы и равновесия, координации позы и выполняемого целенаправленного движения, программировании целенаправленных движений.

Физиология лимбической системы.

Под лимбической системой понимают функциональное объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма. В эволюционном аспекте лимбическая система сформировалась в процессе усложнения форм поведения организма, перехода от жестких, генетически запрограммированных форм поведения к пластичным, основанным на обучении и памяти.

В более узком понимании в лимбическую систему включают образования древней коры (обонятельная луковица и бугорок, периамигдалярная и препириформная кора), старой коры (гиппокамп, зубчатая и поясная извилины), подкорковые ядра (миндалина, ядра перегородки). По отношению к гипоталамусу и ретикулярной формации ствола этот комплекс рассматривается как более высокий уровень интеграции вегетативных функций. В настоящее время преобладает понимание лимбической системы в более широком плане: кроме вышеназванных структур, в нее также включают зоны новой коры лобной и височной долей, гипоталамус и РФ среднего мозга.

Получая информацию о внешней и внутрен­ней среде организма, лимбическая система после сравнения и обработки этой информации запускает через эфферентные выходы вегетативные, соматические и поведенческие реакции, обеспечивающие приспособление организма к внешней среде и сохранение внутренней среды на определенном уровне.

Лимбическую систему иногда называют «висцеральным мозгом». Эта функция осуществляется преимущественно через деятельность гипоталамуса, который является диэнцефалическим звеном лимбической системы. О тесных эфферентных связях лимбической системы (через гипоталамус) с внутренними органами свидетельствуют разнообразные изменения их функций при раздражении лимбических структур, особенно миндалины. При этом эффекты имеют различный знак в виде активации или угнетения висцеральных функций: происходит повышение или понижение частоты сердечных сокращений, моторики и секреции желудка и кишечника, секреции различных гормонов аденогипофизом (особенно АКТГ и гонадотропинов).

Велика роль лимбической системы в формировании эмоциональных состояний организма.

Исключительны когнитивные функции лимбической системы, особенно ее участие в формировании памяти и обучения.

Среди структур лимбической системы, ответственных за память и обучение, весьма важную роль играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность необходима для консолидации памяти — перехода кратковременной памяти в долговременную. Повреждение гиппокампа у человека вызывает резкое нарушение усвоения новой информации, образования долго­временной памяти.

Электрофизиологической особенностью гиппокампа является то, что в ответ на сенсорное раздражение, стимуляцию ретикулярной формации и заднего гипоталамуса в гиппокампе развивается синхронизация электрической активности в виде тета-ритма (4— 7 Гц). При этом в новой коре, напротив, возникает десинхронизация в виде бета-ритма (14—30 Гц). Пейсмекером тета-ритма считают перегородку, ее медиальное ядро. Вопрос о поведенческих проявлениях гиппокампального тета-ритма до сих пор не решен. Его считают индикатором участия гиппокампа в ориентировочных рефлексах, реакциях внимания, настороженности, развитии эмоционального напряжения. Однако большинство исследователей считают, что он связан с обработкой мозгом информации и организацией памяти. Другой электрофизиологической особенностью гиппокампа является его уникальная способность на стимуляцию отвечать длительной (в течение часов, дней и даже недель) посттетанической потенциацией, которая приводит к облегчению синаптической передачи и является основой формирования памяти. Ультраструктурным проявлением участия гиппокампа в процессах памяти является увеличение числа шипиков на дендритах его пирамидных нейронов, что свидетельствует об усилении синаптической передачи возбуждающих и тормозных влияний.

Кора больших полушарий мозга

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500—2200 см2, покрывающий большие полушария; она составляет около 72 % всей площади коры и около 40 % массы головного мозга. В коре имеется около 14 млрд нейронов, количество глиальных клеток примерно в 10 раз больше. Кора большого мозга является в филогенетическом плане наиболее молодой нервной структурой; у человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Нейронная организация новой коры. В направлении с поверхности в глубь коры различают 6 горизонтальных слоев.

I — молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

II — наружный зернистый слой составлен в основном звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток второго слоя расположены преимущественно вдоль поверхности коры, образуя кортико-кортикальные связи.

  1. — наружный пирамидный слой состоит в основном из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

  2. внутренний зернистый слой по характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое имеют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса; здесь отмечена наибольшая плотность капилляризации.

V -- внутренний пирамидный слой образован средними и крупными пирамидными нейронами, причем в двигательной коре расположены гигантские пирамидные клетки Беца. Аксоны этих клеток образуют эфферентные кортико-спинальный и кортико-бульбарный двигательные тракты.

VI — слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортико-таламические пути.

Оценивая в целом афферентные и эфферентные связи коры большого мозга, можно отметить, что в слоях I—IV происходит восприятие и обработка поступающих в кору сигналов. Напротив, покидающие кору эфферентные пути формируются преимущественно в V—VI слоях. Более детально деле­ние коры на различные поля проведено на основе цитоархитектонических признаков (форма и расположение нейронов) К. Бродманом, который выделил 52 поля; многие из них характеризуются функциональными и нейрохимическими особенностями.

Цитоархитектоническая карта полей коры больших полушарий человека по К Бродману. А- латеральная, Б- медиальная поверхность.

Электрофизиологические исследования с погружением микроэлектродов перпендикулярно поверхности соматосенсорной коры показали, что все встречаемые на пути нейроны отвечают на раздражитель только одного качества, например, тактильный. Напротив, при погружении электрода под углом на его пути попадались нейроны разной модальности. Был сделан вывод, что в коре мозга имеются функциональные объединения нейронов, расположенные в цилиндрике диаметром 0,5—1,0 мм. Эти объединения были названы нейронными колонками. Они обнаружены в моторной коре, в различных зонах сенсорной коры. Соседние нейронные колонки могут взаимодействовать друг с другом.

Локализация функций в коре большого мозга интенсивно изучается в клинической и экспериментальной медицине, начиная с середины XIX в. При разработке этой проблемы были сформулированы две противоположные по смыслу концепции: узкого локализационизма и функциональной равноценности различных корковых структур. Современная концепция локализации функций базируется на принципе многофункциональности (но не равноценности) корковых полей.

Одним из наиболее известных вариантов функционального разделения коры большого мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

СЕНСОРНЫЕ ОБЛАСТИ КОРЫ

Это зоны, в которые проецируются сенсорные раздражители (проекционная кора, корковые отделы анализаторов). Они расположены преимущественно в теменной (поля 1—3), височной (поля 21, 22, 41, 42) и затылочной (поля 17—19) долях. Афферентные пути в сенсорную кору поступают преимущественно от релейных сенсорных ядер таламуса — вентральных задних латерального и медиального.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и по-стоянные изменения чувствительности организма, называются первичными сенсорными областями (ядерные части анализаторов, по И.П. Павлову). Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшими сенсорными областями являются теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий (поля 1—3). Эту зону обозначают как соматосенсорную область I. Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных, сухожильных рецепторов. Проекция головы и верхних отделов туловища находится в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног - в верхнемедиальных зонах извилины, проекция нижней части голени и стоп расположена в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекции наиболее чувствительных участков (язык, губы, гортань, пальцы) имеют относительно большие зоны по сравнению с другими частями тела. Предполагается, что в соматосенсорной области I в зоне тактильной чувствительности языка расположена проекция и вкусовой чувствительности.

Кроме соматосенсорной области I, выделяют меньших размеров соматосенсорную область II, расположенную на границе пересечения центральной борозды с верхним краем височной доли, в глубине латеральной борозды. Степень локализации частей тела здесь выражена хуже. Функции области II плохо изучены. Известно, что сигналы в эту область поступают с обеих сторон тела и от других сенсорных областей мозга, например зрительных и слуховых.

Хорошо изученной первичной проекционной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, различающиеся по громкости, тону и другим характеристикам. Здесь имеется четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах (поля 20 и 21). Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Важнейшая первичная проекционная область новой коры расположена в затылочной коре – это первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеется топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет сравнительно большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры поля 17 приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные и слуховые раздражители.

Основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

АССОЦИАТИВНЫЕ ОБЛАСТИ КОРЫ

Ассоциативная (межсенсорная, межанализаторная кора) включает участки новой коры большого мозга, которые расположены рядом с сенсорными и двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко, неопределенность преимущественно связана со вторичными (высшими) проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и человека. У нас она составляет около 50 % всей коры и 70 % неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры, отличающей их от нейронов первичных зон, является по-лисенсорность (полимодальность): они отвечают, как правило, не на один, а на несколько раздражителей. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений.

Таламолобная система представлена ассоциативными зонами лобной коры (поля 9— 14), имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер.

Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П.К. Анохин).

В результате операции префронтальной лоботомии, при которой лобные доли по медицинским показаниям изолируются, наблюдаются выраженные изменения поведения, в котором обычно доминируют эмоциональные расстройства, неадекватность поступков и действий, особенно в изменившихся условиях.

Надо отметить, что некоторые ассоциативные центры включают в себя и участки височной коры (поле 39). В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37 и 42 левого доминантного полушария). Этот центр обеспечивает распознание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины (поле 22) находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей (поле 39) локализован центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Психические функции, осуществляемые ассоциативной корой, инициируют поведение организма, обязательным компонентом которого являются произвольные целенаправленные движения, осуществляемые при обязательном участии двигательной коры.

ДВИГАТЕЛЬНЫЕ ОБЛАСТИ КОРЫ

Представление о двигательной коре большого мозга начало формироваться с 80-х годов XIX в., когда было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны. В двигательной коре выделяют первичную и вторичную моторные области. В первичной двигательной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекции мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь («двигательный человечек» Пенфилда). Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость): они представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражениях этой корковой зоны утрачивается способность к тонким координированным движениям конечностей, особенно пальцев рук.

Вторичная двигательная к о р а (поле 6) расположена как на латеральной поверхности полушарий, впереди прецент-ральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область).

Вторичная двигательная кора в функциональном плане имеет главенствующее положение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений. Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевые движения, а также музыкальный моторный центр (поле 45), тональности речи.

Эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные тракты, начинающиеся от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток V слоя коры прецентральной извилины (60 % волокон), премоторной коры (20 % волокон) и постцентральной извилины (20 % волокон). От крупных пирамидных нейронов формируются преимущественно пирамидные пути. Они иннервируют крупные (фазические, высокопороговые) α-мотонейроны в моторных центрах ствола и спинного мозга, регулирующие движение тела и его частей в пространстве. Крупные пирамидные клетки имеют фоновую импульсную активность около 5 имп/с, которая при движениях увеличивается до 20—30 имп/с. От мелких пирамидных клеток формируются преимущественно экстрапирамидные пути. Эти клетки имеют фоновую активность около 15 имп/с, которая во время движения увеличивается или уменьшается; они иннервируют мелкие (тонические, низкопороговые) α-мотонейроны в стволовых и спинальных двигательных центрах и регулируют тонус мышц и позу.

Волокна пирамидного пути оканчиваются на α-мотонейронах двигательных ядер III— VII и IX—XII черепных нервов (кортико-бульбарный тракт) или спинальных двигательных центрах (кортико-спинальные тракты). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы (например, профессиональные навыки), формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре. Большинство волокон пирамидных путей осуществляет перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушения функции движения при односторонних поражениях. Через пирамидные тракты осуществляет свои функции и премоторная кора. К ним относятся двигательные навыки письма, сочетанные повороты головы, глаз и туловища, речевые функции (речедвигательный центр Брока, поле 44). В регуляции письменной и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95 % правшей и у 70 % левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относятся кортико-рубральные и кортико-ре-тикулярные тракты, начинающиеся приблизительно от зон, которые дают начало пирамидным путям. Волокна кортико-рубрального тракта оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные тракты. Волокна кортико-ретикулярных трактов оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные тракты) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные тракты. Через эти тракты осуществляется регуляция тонуса и позы, обеспечивающих точные, целенаправленные движения. Корковые экстрапирамидные тракты являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола; она осуществляет регуляцию тонуса, позы, координацию и коррекцию движений. Поскольку кортико-пирамидные пути отдают многочисленные коллатерали к структурам экстрапирамидной системы, обе системы работают в функциональном единстве, и некоторые авторы [Шмидт Р., 1985] считают нецелесообразным их разделение. О функциональном единстве этих систем свидетельствуют и опыты по перерезке пирамидных путей у приматов. У таких животных не было отмечено грубых нарушений движений: сохранялись стояние, ходьба, двигательные условные рефлексы, сложные программированные движения. Не восстанавливались только «специфические» функции пирамидных путей — независимые, точные движения пальцев рук и контроль силы этих движений.

Определяющую роль в структурном обеспечении двигательных актов играют следующие образования:

  • фронтальная кора, выступающая в качестве инициатора замысла действия;

  • ассоциативная теменная кора, выполняющая функции интеграции гетеромодальных возбуждений, а также командные функции в отношении ряда параметров движения;

  • базальные ганглии, мозжечок, возможно, выполняющие функции накопителей «двигательных программ»;

• моторная кора, моторные центры ствола, спинного мозга, обеспечивающие выбор мышечных эффекторов в ходе реализации программы двигательного акта и управления двигательным процессом на базе обратной афферентации.

У человека четко проявляются межполушарные взаимотношения в двух главных формах — функциональной асимметрии больших полушарий и совместной их деятельности.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Ее исследование началось в середине прошлого века, когда французские медики М. Дакс (1836) и П. Брока (1861) показали, что нарушение речи человека возникает при поражении коры нижней лобной извилины, как правило, левого полушария. Несколько позже немецкий психиатр К. Вернике (1874) обнаружил в коре заднего отдела верхней височной извилины левого полушария слуховой центр речи, поражение которого приводит к нарушению понимания устной речи. Эти результаты и наличие моторной асимметрии (праворукость) сформировали концепцию, согласно которой для человека характерно левополушарное доминирование, образовавшееся эволюционно в результате трудовой деятельности и являющееся специфическим свойством его мозга. Однако в XX в. в результате применения различных методических подходов, особенно при исследовании больных с расщепленным мозгом (перерезка мозолистого тела), было показано, что по ряду психофизиологических функций доминирует не левое, а правое полушарие, и возникла концепция частичного доминирования полушарий.

Выделяют психическую, сенсорную и моторную межполушарные функциональные асимметрии мозга.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы — мозолистого тела, передней, задней, гиппокампальной и хабенулярной комиссур, межбугрового сращения, которые анатомически соединяют два полушария головного мозга. Результаты, свидетельствующие о переносе возбуждения из одного полушария в другое, получены преимущественно с использованием электрофизиологических методик и метода условных рефлексов.

Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но также и в несимметричные участки коры (например, из зрительной коры одного полушария в моторную кору противоположного полушария).

ЭЛЕКТРОЭНЦЕФАЛОГРАФИЧЕСКИЙ МЕТОД

Электроэнцефалографический метод основан на регистрации суммарной электрической активности мозга – электроэнцефалограммы (ЭЭГ). Впервые ЭЭГ у животных была заре­гистрирована В.В. Правдич-Неминским (1913), у человека -- Г. Бергером (1929). Запись ЭЭГ возможна как с поверхности кожи головы, так и непосредственно с коры головного мозга. В последнем случае она называется электрокортикограммой (ЭКоГ).

Регистрация ЭЭГ производится с помощью биполярных (оба активны) или униполярных (активный и индифферентный) электродов, накладываемых на проекции лобных, центральных, теменных, височных и затылочных областей головного мозга. В клинике обычно используется запись с помощью 10—12 электродов. Основными анализируемыми параметрами ЭЭГ являются частота и амплитуда волновой активности. Кроме записи фоновой ЭЭГ, у испытуемых часто регистрируют изменения ЭЭГ при действии тех или иных раздражителей экстероцептивных (световых, звуковых и др.), проприоцептивных, вестибулярных и др.

Происхождение волн ЭЭГ выяснено недостаточно. Наиболее вероятно, что ЭЭГ отражает алгебраическую сумму возбуждающих и тормозных постсинаптических потенциалов (ВПСП и ТПСП) множества нейронов в зоне расположения отводящих электродов. На ЭЭГ регистрируется 4 основных физиологических ритма: альфа, бета, тета и дельта.

Альфа-ритм имеет частоту 8—13 Гц, амплитуду до 70 мкВ. Этот ритм наблюдается у человека в состоянии физического, интеллектуального и эмоционального покоя. Альфа-ритм является упорядоченным регулярным ритмом. Если он доминирует, ЭЭГ оценивается как синхронизированная. Механизм синхронизации ЭЭГ связан с деятельностью выходных ядер таламуса.

Альфа-ритм преобладает у 85—95 % здоровых людей старше девятилетнего возраста. Лучше всего он выражен в затылочных областях мозга, в передних (лобной и центральной) областях, часто сочетается с бета–ритмом. Вариантом альфа-ритма являются «веретена сна» длительностью 2—8 с, которые наблюдаются при засыпании и представляют собой регулярные чередования нарастания и снижения амплитуды волн в частотах альфа-ритма.

Бета-ритм имеет частоту 14—30 Гц, амплитуду до 30 мкВ, характеризуется нерегулярными по частоте низкоамплитудными волнами, которые сменяют альфа-ритм при сенсорной стимуляции (например, при действии света, сильного звука), при эмоциональном возбуждении. Наиболее выражен бета-ритм в лобных, центральных областях головного мозга. Смена альфа-ритма бета-ритмом называется десинхронизацией ЭЭГ. Ее механизм связывают с активирующим влиянием на кору большого мозга восходящей ретикулярной формации ствола и лимбической системы. Бета-ритм отражает высокий уровень функциональной активности головного мозга.

Тета-ритм имеет частоту 4—7 Гц, амплитуду — до 200 мкВ. У бодрствующего человека тета-ритм на ЭЭГ регистрируется обычно в передних областях мозга при длительном эмоциональном напряжении. Отчетливо проявляется у детей, пребывающих в состоянии эмоции неудовольствия. Тета-ритм почти всегда выявляется в процессе развития фаз медленноволнового сна.

Дельта-ритм имеет частоту 0,5—3,0 Гц, амплитуду — 200—300 мкВ. Эпизодически регистрируется во всех областях головного мозга. Стабильно фиксируется во время глубокого медленноволнового сна. Появление этого ритма у бодрствующего человека свидетельствует о снижении функциональной активности мозга.

Происхождение тета- и дельта-ритмов ЭЭГ связывают с активностью соответственно мостовой и бульбарной синхронизирующих систем ствола мозга.