Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-30.docx
Скачиваний:
99
Добавлен:
08.03.2016
Размер:
272.64 Кб
Скачать

24 Фотоядерные реакции

Основной источник γ-квантов – тормозное изучение, имеющее непрерывный спектр. При энергиях γ- квантов ~10 МэВ энергетическая зависимость сечения их поглощения ядром характеризуется широким максимумом. При больших энергиях идут процессы выбивания нуклонов из ядра, например, (γ, n), фрагментация нуклонов в ядре и фоторождение пионов (γ, p). В делящихся ядрах с большой вероятностью идёт реакция фотоделения (γ, f). В области энергий γ-квантов, больших нескольких десятков МэВ, фотоделение ядер становится возможным практически для всех элементов. Фотоделение ядер в области промежуточных энергий (~100 МэВ) практически всегда сопровождается вылетом достаточно большого числа нейтронов и лёгких ядерных фрагментов. Фотоядерные реакции - ядерные реакции, происходящие при поглощении гамма-квантов ядрами атомов. Явление испускания ядрами нуклонов при этой реакции называется ядерным фотоэффектом. Это явление было открыто Чедвиком и Гольдгабером в 1934 и в дальнейшем исследовано Боте и Вольфгангом Гентером, а затем и Нильсом Бором. Обычно под действием γ-лучей идут реакции типа (γ,n), (γ,p) и (γ,α), известны также реакции (γ, d), (γ, pn) и др. Иногда фотоядерными реакциями называются процессы, в которых γ-кванты высокой энергии, поглощаясь ядрами или отдельными нуклонами, вызывают рождение пи-мезонов (например, γ + p → n + π- ; γ + р → р + π0 ) и др. элементарных частиц. К фотоядерным реакциям относится также процесс рассеяния γ- квантов. Для вырывания из атомного ядра протона или нейтрона (нуклонов) энергия γ-кванта Eγ должна превышать энергию связи нуклона в ядре. Примером является реакция фоторасщепления дейтона (Eγ=2,62 МэВ) γ+1H2 →n+p (50) в результате которой возникают протоны с энергией 0,2 МэВ. Она идёт без образования составного ядра, так как ядро дейтерия не имеет возбуждённых состояний, и может быть вызвана γ-квантами не очень высокой энергии. Другой реакцией, протекающей под действием γ-лучей естественных элементов (Еγ =1,78 МэВ) является γ+4Be9 →4Be8 +n, 4Be8 →22He4 . (51) Этим и ограничивается список ядерных реакций, идущих под действием γ-лучей, испускаемых естественными радиоактивными элементами. У всех остальных ядер энергия отделения нуклонов превосходит энергию γ-лучей, испускаемых радиоактивными ядрами.

25 Упругое рассеяние заряженных частиц на ядрах

При пролете заряженной честицы через атом в непосредственной близости от ядра происходит кулоновское взаимодействие с ядром, так как прицельный параметр (b << a) настолько мал, что кулоновское поле ядра не экранируется полем атомных электронов. Механизм кулоновского взаимодействия частиц с ядрами в общих чертах тот же, что и при ионизационном торможении. Сравним потери знергии заряженной частицей (M,ze,V) при взаимодействии с кулоновским полем ядер (me,Ze) и атомными электронами (me,e), при этом покажем, что передача энергии ядрам за счет кулоновских сил будет невелика по сравнению с ионизационными потерями. Отношение потерь энергии в этих случаях будет:

Таким образом, потери энергии на упругое взаимодействие с ядрами составляют около 0,03% от ионизационных потерь, т.е. дают незначительный вклад в общие потери знергии. Величину энергетических потерь из-за кулоновского взаимодействия частицы с ядрами среды получают интегрированием по всем возможным прицельным параметрам:

где bmin приблизительно равен радиусу ядра bmin ≈ R, а bmax соответствует расстоянию от ядра, на котором наблюдается полное экранирование кулоновского поля ядра атомными электронами bmax ≈ a.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]