Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-30.docx
Скачиваний:
100
Добавлен:
08.03.2016
Размер:
272.64 Кб
Скачать

Спин ядра и моменты нуклонов

    Основное и возбужденные состояния ядра и других квантовых систем характеризуется набором квантовых чисел, являющихся собственными значениями операторов физических величин. Квантовый оператор F называется собственным оператором, если его действие на волновую функцию системы приводит к той же волновой функции, умноженной на число - собственное значение оператора:

 = f.

    Примерами таких операторов являются оператор квадрата момента количества движения квантовой системы и оператор проекции момента количества движения на выделенную ось. Собственные значения операторов физических величин сохраняются или, как иногда говорят, являются хорошими квантовыми числами, если соответствующий оператор коммутирует с полным гамильтонианом квантовой системы. 

Изоспин ядер и нуклонов

    Как основное, так и возбужденные состояния ядер - помимо рассмотренных выше энергии, спина и четности – характеризуются квантовыми числами, которые называются изоспином и проекцией изоспина. (В литературе эти квантовые числа обозначаются обычно либо символами T и Tz, либо I и Iz ).     Введение этих квантовых чисел связано с тем фактом, что ядерные силы инвариантны относительно замены протонов на нейтроны. Это особенно ярко проявляется в спектрах т.н. ”зеркальных” ядер, т.е. ядер–изобар, у которых число протонов одного равно числу нейтронов другого. Для всех известных пар таких ядер имеет место подобие спектров низших возбужденных состояний: спины и четности низших состояний одинаковы, а энергии возбуждения близки.      С точки зрения теории изоспина, нейтрон и протон являются одной и той же частицей – нуклоном с изоспином I = 1/2 – в двух разных состояниях, различающихся проекцией изоспина на выделенную ось (Iz= I3) в пространстве изоспина. Таких проекций для момента I = 1/2 может быть только две: Iz = +1/2 (протон) и Iz = –1/2 (нейтрон). Квантовая теория изоспина построена по аналогии с теорией спина. Однако пространство изоспина не совпадает с обычным координатным пространством.

Система Z протонов и N нейтронов – ядро - имеет проекцию изоспина

Iz(A,Z) = Z.(+1/2) + N.(-1/2) = (Z - N)/2.

(1.18)

Изоспин системы нуклонов является векторной суммой изоспинов составляющих:

.

2 Параметры ядерных систем при радиоактивных распадах

Закон радиоактивного распада — физический закон, описывающий зависимость интенсивности радиоактивного распада от времени и количества радиоактивных атомов в образце. Открыт Фредериком Содди и Эрнестом Резерфордом, каждый из которых впоследствии был награжден Нобелевской премией. Они обнаружили егоэкспериментальным путём и опубликовали в 1903 году в работах «Сравнительное изучение радиоактивности радия и тория»[1] и «Радиоактивное превращение»[2], сформулировав следующим образом[3]:

Во всех случаях, когда отделяли один из радиоактивных продуктов и исследовали его активность независимо от радиоактивности вещества, из которого он образовался, было обнаружено, что активность при всех исследованиях уменьшается со временем по закону геометрической прогрессии.

из чего с помощью теоремы Бернулли учёные сделали вывод[источник не указан 1393 дня]:

Скорость превращения всё время пропорциональна количеству систем, еще не подвергнувшихся превращению.

Существует несколько формулировок закона, например, в виде дифференциального уравнения:

которое означает, что число распадов −dN, произошедшее за короткий интервал времени dt, пропорционально числуатомов N в образце.

В указанном выше математическом выражении  — постоянная распада, которая характеризует вероятностьрадиоактивного распада за единицу времени и имеющая размерность с−1. Знак минус указывает на убыль числа радиоактивных ядер со временем.

Решение этого дифференциального уравнения имеет вид:

где  — начальное число атомов, то есть число атомов для 

Таким образом, число радиоактивных атомов уменьшается со временем по экспоненциальному закону. Скорость распада, то есть число распадов в единицу времени , также падает экспоненциально. Дифференцируя выражение для зависимости числа атомов от времени, получаем:

где  — скорость распада в начальный момент времени 

Таким образом, зависимость от времени числа нераспавшихся радиоактивных атомов и скорости распада описывается одной и той же постоянной 

Из закона радиоактивного распада можно получить выражение для среднего времени жизни радиоактивного атома. Число атомов, в момент времени претерпевших распад в пределах интервала равно их время жизни равно Среднее время жизни получаем интегрированием по всему периоду распада:

Подставляя эту величину в экспоненциальные временные зависимости для и легко видеть, что за время число радиоактивных атомов и активность образца (количество распадов в секунду) уменьшаются в e раз[4].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]