Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Dynamic_System_Modeling_and_Control.pdf
Скачиваний:
19
Добавлен:
23.03.2016
Размер:
5.61 Mб
Скачать

linear feedback controller analysis - 18.5

18.2.2 Analysis of PID Controlled Systems With Laplace Transforms

1. We can rewrite the control equation as a ratio of output to input.

 

 

 

 

 

 

 

 

 

 

 

 

dverror

 

θ

 

 

 

 

 

 

 

 

 

----------------

 

gas = Kcverror + Kiverrordt + Kd

dt

 

 

θ

 

gas

Kc + Kidt + Kd

d

 

 

 

------------ =

----

 

 

 

 

verror

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

Then do a Laplace transform

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

dx

 

 

 

 

 

 

 

 

 

----

s

 

 

-----

sx

 

 

 

 

 

 

 

dt

 

 

dt

 

 

 

 

 

 

 

dt

=

1

 

xdt

=

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--

 

-

 

 

 

 

 

 

 

 

 

s

 

 

 

 

s

 

 

 

 

 

 

 

 

 

The transfer function

L

 

 

θ gas

 

= Kc +

Ki

+ Kds

 

 

 

 

------------

 

----

 

 

 

 

 

 

 

verror

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

linear feedback controller analysis - 18.6

2. We can also develop a transfer function for the car.

F = Aθ gas

= 10θ

gas

 

 

 

 

 

 

 

 

 

 

F

= 10

 

Transfer function for engine and transmission. (Laplace

---------

 

θ

gas

 

 

transform would be the same as initial value.)

 

 

 

 

 

 

d2x

dv

F =

Ma =

M

-------

= M-----

 

 

 

 

 

 

dt

2

dt

 

 

 

 

 

 

 

 

F

=

 

d

 

 

 

 

--

 

M----

 

 

 

 

v

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

1

 

 

 

 

 

 

 

 

 

 

 

L

---

 

------

 

 

Transfer function for acceleration of car mass

 

F

= Ms

 

 

 

 

 

 

 

 

 

 

 

3. We want to draw the system model for the car.

θ gas

10

F

1

vactual

 

 

 

 

------

 

 

 

 

 

 

 

 

 

 

 

Ms

 

The ‘system model’ is shown above.

If θ gas is specified directly, this is called ‘open loop control’. This is not desirable, but much simpler.

The two blocks above can be replaced with a single one.

θ gas

10

vactual

 

 

------

 

 

 

 

 

 

Ms

 

linear feedback controller analysis - 18.7

4.If we have an objective speed, and an actual speed, the difference is the ‘system error’

verror = vdesired vactual

‘set-point’ - desired system operating point

5. Finally, knowing the error is verror, and we can control θ gas (the control variable), we can select a control system.

verror

Controller

θ gas

 

 

 

 

L

 

θ gas

 

= Kc

Ki

+ Kds

 

 

------------

 

+ ----

 

 

verror

 

 

s

 

 

 

 

 

 

*The coefficients can be calculated using classical techniques, but they are more commonly approximated by trial and error.

6. For all the components we can now draw a ‘block diagram’

vdesired

verror

 

K

 

+ K s

θ gas

10

F

1

vactual

 

 

K + ----

 

 

------

 

 

+

c

 

i

d

 

 

 

Ms

 

 

s

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

• A ‘negative feedback loop

that is the fundamental part of this ‘closed loop control system’

linear feedback controller analysis - 18.8

18.2.3Finding The System Response To An Input

Even though the transfer function uses the Laplace ‘s’, it is still a ratio of input to

output.

Find an input in terms of the Laplace ‘s’

vdesired

100

step

vdesired(t) = 100 for t >= 0 sec

 

 

ramp

 

vdesired(t) = 50t for t >= 0 sec

 

t(sec)

 

0

 

 

 

 

Input type

Time function

Laplace function

 

 

 

 

STEP

f( t)

= Au( t)

f( s)

A

 

 

 

 

 

= --

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

RAMP

f( t)

= Atu( t)

f( s)

 

 

 

 

 

= ----

 

 

 

 

 

 

 

 

 

 

 

s2

2

 

 

 

 

 

 

 

 

 

 

Aω

 

 

 

 

SINUSOID

f( t)

= A sin ( ω t) u( t)

f( s) =

 

 

 

 

-----------------

 

 

 

 

 

 

 

 

 

 

s2 + ω 2

PULSE

f( t)

= A( u( t) u( t t1) )

f( s)

=

etc......

linear feedback controller analysis - 18.9

Therefore to continue the car example, lets assume the input below,

vdesired( t)

= 100

t ≥ 0 sec

vdesired( s)

= L[ vdesired( t) ] =

100

--------

 

 

s

Next, lets use the input, and transfer function to find the output of the system.

 

 

 

 

vactual

 

 

 

 

 

vactual = v-----------------

 

 

vdesired

 

 

 

 

 

 

 

 

desired

 

 

 

 

 

 

 

 

s2( K )

+ s( K ) + K

 

 

 

 

 

 

 

 

i

 

 

100

 

=

 

 

d

 

c

 

vactual

-------------------------------------------------------------

 

 

 

 

 

 

 

--------

 

2

M

 

 

 

 

 

s

 

 

s

 

 

+ s( K ) + K

 

 

 

 

----- + K

 

 

 

 

 

 

10

 

d

c

 

 

 

 

 

 

 

 

 

 

 

i

 

 

To go further, some numbers will be selected for the values.

 

Kd = 10000

 

 

 

 

Kc = 10000

 

 

 

 

Ki = 1000

 

 

 

 

M = 1000

 

 

 

 

 

 

 

 

 

s2( 10000) + s( 10000)

+ 1000

 

100

 

-----------------------------------------------------------------------

 

 

--------

vactual

=

 

 

 

 

s2( 10100) + s( 10000)

+ 1000

 

s

linear feedback controller analysis - 18.10

At this point we have the output function, but not in terms of time yet. To do this we break up the function into partial fractions, and then find inverse Laplace transforms for each.

 

 

 

 

 

2

 

 

s2

+ s + 0.1

 

 

 

 

 

vactual

=

10

--------------------------------------------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s( s2( 1.01)

+ s + 0.1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aside: We must find the roots of the equation, before we

 

 

 

 

 

 

 

 

 

can continue with the partial fraction expansion.

 

 

 

 

 

 

 

 

 

recall the quadratic formula,

 

 

 

 

 

 

 

 

 

 

 

 

ax2 + bx + c = 0

x =

-------------------------------------- b ± b2 – 4ac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2a

 

 

 

 

 

 

 

 

 

 

x =

– 1 ±

12

– 4( 1.01) ( 0.1)

= –0.113, –0.877

 

 

 

 

 

 

 

 

 

------------------------------------------------------------

2

( 1.01)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

 

=

102

 

 

s2

+ s + 0.1

 

 

 

 

 

 

 

 

 

 

---------------------------------------------------

 

 

 

 

 

actual

 

1.01

s( s + 0.113) s + 0.877

 

 

 

 

 

 

 

 

A

 

 

 

B

 

 

C

 

 

 

 

 

vactual

 

=

--s

+ s + 0.114 + s + 0.795--------------------- ---------------------

 

 

 

 

linear feedback controller analysis - 18.11

A = lim

 

s

 

102

 

 

 

 

s2 + s + 0.1

 

 

 

102

 

0.1

 

 

 

 

 

 

 

 

---------

 

--------------------------------------------------------

 

= ---------

 

------------------------------------

 

 

s 0

 

 

1.01

s( s + 0.113) ( s + 0.877)

 

 

1.01

( 0.113) ( 0.877)

 

A = 99.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102

 

 

s2

+ s + 0.1

 

 

 

 

 

 

 

 

B =

 

lim

 

 

 

 

 

( s + 0.113)

 

 

 

 

 

---------

--------------------------------------------------------

 

 

 

 

 

s

–0.113

 

 

1.01

s( s + 0.113) ( s + 0.877)

 

 

 

 

 

 

 

B =

102

 

 

( –0.113) 2

+ ( –0.113) + 0.1

=

0.264

 

 

 

 

 

---------

-----------------------------------------------------------------

 

 

 

 

 

 

 

 

1.01

( –0.113) (

– 0.113 + 0.877)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102

 

 

s2

+ s + 0.1

 

 

 

 

 

 

 

 

C =

 

lim

 

 

 

 

 

 

( s + 0.877)

 

 

 

 

 

---------

--------------------------------------------------------

 

 

 

 

 

s

–0.877

 

1.01

s( s + 0.113) ( s + 0.877)

 

 

 

 

 

 

 

 

C =

102

 

 

( –0.877) 2

+ ( –0.877) + 0.1

=

–1.16

 

 

 

 

 

---------

-----------------------------------------------------------------

 

 

 

 

 

 

 

 

1.01

( –0.877) (

– 0.877 + 0.113)

 

 

 

 

 

 

 

 

 

 

v

 

 

 

=

99.9

 

 

0.264

1.16

 

 

 

 

 

 

 

 

 

 

actual

--------- + ---------------------

– ---------------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

s + 0.113

s + 0.877

 

 

 

 

 

 

 

 

 

linear feedback controller analysis - 18.12

Next we use a list of forward/inverse transforms to replace the terms in the partial fraction expansion.

 

f( t)

 

 

 

f( s)

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

A

 

 

 

 

 

 

--

 

 

 

 

 

 

 

 

s

 

 

 

At

 

 

 

A

 

 

 

 

 

 

----

 

 

 

 

 

 

 

 

s2

 

 

 

Ae

α t

 

 

 

A

 

 

 

 

 

 

 

-----------

 

 

 

 

 

 

 

 

s + α

 

 

 

A sin ( ω

t)

 

 

Aω

 

 

 

 

-----------------

 

 

 

 

 

 

 

s2 + ω 2

 

 

ξω

nt

 

2

ω

n

1 – ξ 2

for( ξ < 1)

e

sin ( ω nt

1 – ξ )

---------------------------------------

 

 

 

 

 

 

s2 + 2ξω ns + ω n2

 

 

etc.

To finish the problem, we simply convert each term of the partial fraction back to the time domain.

vactual =

99.9---------

+

---------------------0.264

---------------------1.16

 

s

 

s + 0.113

 

s + 0.877

vactual = 99.9 + 0.264e–0.113t – 1.16e–0.877t

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]