Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Dynamic_System_Modeling_and_Control.pdf
Скачиваний:
19
Добавлен:
23.03.2016
Размер:
5.61 Mб
Скачать

differential equations - 3.56

3.9 PRACTICE PROBLEM SOLUTIONS

1.

 

 

 

B

 

 

 

 

x( t)

=

-----------FMeM----t

F--t + FM--------

 

 

B

2

 

B

B

2

 

 

 

 

 

 

2.

homogeneous:

guess

yh = e

At

·

 

At

··

 

2

e

At

 

 

 

yh = Ae

 

yh = A

 

 

 

 

A2eAt + ( 100s–2) eAt

= 0

 

 

 

 

 

 

 

A2

= –100s–2

 

A

= ± 10js–1

 

 

 

 

 

 

yh

= C1 cos ( 10t + C2)

 

 

 

 

 

 

particular:

guess

yp

= A

 

·

= 0

··

= 0

 

 

 

 

yp

yp

 

 

 

( 0) + ( 100s–2) A = 9.81ms–2

 

 

 

 

 

 

( 100s–2) A = 9.81ms–2

 

 

 

 

 

 

 

 

 

9.81ms–2

= 0.0981m

 

 

 

 

 

 

 

A = ----------------------

 

 

 

 

 

 

 

 

100s–2

 

 

 

 

 

 

 

 

 

 

yp = 0.0981m

 

 

 

 

 

 

 

 

initial conditions:

 

y =

yh + yp = C1 cos ( 10t + C2) + 0.0981m

 

 

 

 

y' =

–10C1 sin ( 10t + C2)

 

 

 

 

 

 

 

 

for d/dt y0 = 0m:

 

 

 

 

 

 

 

 

 

 

 

 

0 = –10C1 sin ( 10( 0) + C2)

 

 

 

C2 = 0

 

 

for y0 = 0m:

 

 

 

 

 

 

 

 

 

 

 

 

0 = C1 cos ( 10( 0)

+ ( 0) ) + 0.0981m

 

 

 

 

–0.0981m = C1 cos ( 0)

C1

= –0.0981m

y( t) = ( –0.0981m) cos ( 10t) + 0.0981m

differential equations - 3.57

3.

case 1:

x( t)

=

– 0.0115e–5t cos ( 8.66t – 0.524) + 0.010

case 2:

x( t)

=

– 0.010e–10t – 0.10te–10t + 0.010

case 3:

x( t)

= 775 10–6e–37.32t – 0.0108e–2.679t + 0.010

4.

Vo( t)

=

–8.465e–0.6t sin ( 1.960t + 1.274) + 8.095

or

( t)

=

–8.465e–0.6t cos ( 1.960t – 0.2971) + 8.095

Vo

5.

V0( t) = –8.331e–0.6t cos ( 1.96t – 0.238) + 8.095

6.

a)

b)

 

 

 

x1( t)

= et – 1

 

–0.5t

cos ( 0.866t – 0.524) + 10.81

 

x( t) = –12.485e

 

x2( t) = 2et – 2

 

 

 

τ = 1

ζ = 0.5

ω n

= 1

 

 

 

 

 

7.

case 1:

x( t)

=

–0.00117e–5t sin ( 8.66t – 1.061) + 0.0101 sin ( t – 0.101)

case 2:

x( t)

= ( 1.96

10–3) e–10t + ( 9.9 10–3) te–10t + ( 9.9 10–3) sin ( t + 0.20)

case 3:

x( t)

=

( 3.5

10–3) e–2.679t ( 18 10–6) e–37.32t + ( 9.4 10–3) sin ( t + 0.382)

8.24.37 rad/sec

9.fn=3.77Hz, damp.=.575

differential equations - 3.58

10.

·· · ( ) x + 8.048x + 77.88x = F t

11.

Given

K

 

 

s

 

K

 

=

36

N

M =

28N

= 2.85kg

 

d

= 6N---

 

s

---

----------------

 

 

 

m

 

 

 

 

m

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

9.81-----

 

 

 

 

 

 

 

 

 

 

 

 

 

kg

 

The typical transfer function for a mass-spring-damper systems is,

 

·· ·

Kd

+ x

Ks

=

F

 

 

 

 

 

 

x + x

-----

-----

----

 

 

 

 

 

 

 

 

M

 

M

 

M

 

 

 

 

 

The second order parameters can be calculated from this.

··

 

·

( 2ζω

n)

+ x( ω

2

 

 

 

 

 

 

 

 

 

x

+ x

n) = y( t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

kgm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36----------

 

 

 

 

 

 

 

 

 

Ks

 

 

 

---

 

 

ms2

 

 

 

rad

 

ω

n

=

 

=

 

36m

 

 

12.63s

–2

= 3.55

= 0.6Hz

 

-----

 

---------------- =

 

 

---------------- =

 

--------

 

 

 

 

M

 

 

2.85kg

 

 

2.85kg

 

 

 

s

 

 

 

 

Kd

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

-----

 

 

 

6N---

 

 

 

 

 

 

 

ξ

 

 

M

 

 

 

m

 

 

 

 

 

 

 

=

-----------

=

--------------------------------------------

= 0.296

 

 

 

 

2ω

n

 

 

rad

 

 

 

 

 

 

 

 

 

 

 

 

 

--------

2.85kg

 

 

 

 

 

 

 

 

 

 

 

 

2( 3.55) s

 

 

 

 

 

 

 

ω

d

= ω n

1 – ξ

2

= 3.39

rad

 

 

 

 

 

 

 

--------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

If pulled and released the system would have a decaying oscillation about 0.52Hz

A critically damped system would require a damping coefficient of....

 

 

 

Kd

 

 

 

 

 

 

 

 

 

 

 

 

-----

 

 

Kd

 

 

 

 

 

Ns

 

 

M

 

 

 

 

 

K

 

= 20.2

ξ

=

-----------

=

--------------------------------------------

= 1.00

d

-----

2ω

n

2( 3.55)

rad

 

 

 

m

 

 

 

 

--------

2.85kg

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

12.

θ ( t) = – 66 10–6e–39.50t – 3.216e0.1383t + 1.216e–0.3368t + 2.00

differential equations - 3.59

13.

y( t)

= 0.05e

–2.6t

cos ( 12.74t)

= 0.05e

–2.6t

sin

 

π

 

 

 

 

12.74t + --

 

 

 

 

 

 

 

 

2

14.

x

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

t(s)

0

τ1

= 1

2

3

4

Given the equation form,

·

1

 

x + --τ

x = A

The values at steady state will be

·

= 0

x = 4

x

So the unknown ‘A’ can be calculated.

 

1

 

A = 4

0 +

1--

4 = A

 

·

1

x +

1--x = 4

·

x + x = 4

15.

Key points:

First-order:

find initial final values

find time constant with 63% or by slope use these in standard equation

Second-order:

find damped frequency from graph find time to first peak

use these in cosine equation

differential equations - 3.60

16.

For the first peak:

 

 

 

 

 

 

 

 

b

 

=

 

σ

tp

 

 

 

 

 

 

 

 

 

------

e

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

π

 

 

 

2

 

 

 

 

 

 

 

 

ω

d

 

 

 

=

e

σ

0.5

 

 

---

 

 

 

-----

 

 

 

 

 

 

 

tp

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln

 

2

 

= –σ

0.5

 

 

 

 

 

 

 

-----

 

 

 

 

 

 

 

 

10

 

 

2

 

 

 

 

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

= –2 ln

-----

= 3.219

 

 

 

1

 

10

ξ

 

 

 

For the damped frequency:

=

-----------------------------

 

 

 

π

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

 

 

 

 

 

 

-------

 

+ 1

ω

d

=

 

=

2π

 

 

 

tpσ

 

-----

 

 

 

 

 

 

 

 

 

 

 

1s

 

 

 

 

 

 

 

 

 

These values can be used to find the damping coefficient and natural frequency

σ

= ξω

 

 

ω

 

 

3.219

 

 

 

n

n = ------------

 

 

 

 

 

 

 

 

 

 

ξ

 

 

ω

d

= ω

n 1 – ξ

2

 

 

 

 

 

2π

=

3.219

1 – ξ

2

 

 

 

------------

 

 

 

 

 

 

 

 

ξ

1 – ξ 2

 

 

 

 

 

2π

 

2

 

 

 

 

 

3.219------------

=

-------------ξ

2

 

 

 

 

 

 

 

 

 

 

 

 

2π

 

2

=

1

 

ξ = ------------------------------

1

= 0.4560

 

3.219------------

+ 1

----

 

 

2π

2

 

 

ξ

2

 

+ 1

 

 

 

 

 

 

 

 

------------3.219

ω

n

=

3.219

=

3.219

= 7.059

 

 

------------

ξ

---------------

 

 

 

 

 

 

 

0.4560

 

 

 

This leads to the final equation using the steady state value of 10

··

·

2

 

 

 

x + 2

ξω nx + ω

nx = F

 

 

 

··

 

·

( 7.059)

2

x = F

x + 2

( 0.4560) ( 7.059) x +

 

··

·

 

 

 

 

x + 6.438x + 49.83x = F

 

 

 

( 0) + 6.438( 0)

+ 49.83( 10) = F

 

F = 498.3

···

x+ 6.438x + 49.83x = 498.3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]