Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика.doc
Скачиваний:
69
Добавлен:
24.03.2016
Размер:
205.31 Кб
Скачать

II. Хромосомный уровень

Рассматривает морфологическое строение и структурную организацию отдельных хромосом либо хроматиновых нитей. Такое разделение связано с тем, в какую стадию жизненного цикла клетки изучается хромосомный уровень: хромосомы определяются в клетке во время митоза, а хроматин - во время интерфазы.

Структурная организация метафазной хромосомы.

Препараты хромосом можно приготовить из любых тканей, содержащих делящиеся клетки. Клетки культивируют в питательной среде, затем останавливают митозы на стадии метафазы и окрашивают хромосомы специальными красителями. На ранних стадиях изучения хромосом использовали простые способы окрашивания (краситель Гимза или ацетоорсеин), при этом хромосомы окрашивались целиком и равномерно. Такой способ окрашивания позволил выявить морфологические особенности строения хромосом: размеры и форму хромосом.

Согласно Денверской классификации (1960) хромосомы располагаются и нумеруются в зависимости от их длины и расположения центромеры. Предложено нумеровать пары хромосом от 1 до 23. С 1-й по 22 пары - аутосомы, 23 пара - Х-хромосома и У-хромосома. По указанным признакам хромосомы разбиты на 8 групп (A - G). Однако существенным недостатком простого способа окрашивания является невозможность идентификации отдельных хромосом внутри группы.

В 70-х годах ХХ века ученые-генетики разработали новые методы окрашивания хромосом - методы дифференциального окрашивания. В настоящее время существуют несколько модификаций метода дифференциального окрашивания хромосом, которые отличаются использованием определенного флюоресцентного красителя или дополнительными процедурами перед окраской хромосом (тепловая обработка, использование солевых растворов, ферментов). Во всех методах наблюдается неравномерность окрашивания хромосом, при этом каждую хромосому можно надежно идентифицировать. На Парижской конференции по стандартизации и номенклатуре хромосом (1971) было предложено дополнить классификацию хромосом особенностями их сегментарной окраски. Каждая хромосома рассматривается как непрерывная совокупность сегментов. Хромосомные плечи (p - короткое,q - длинное плечо) подразделяются на сегменты, которые в свою очередь нумеруются от центромеры. Например, 1p22.

Структурная организация хроматина.

Хроматин (хроматиновая нить) представляет собой интерфазное состояние хромосомы и отличается от последних степенью спирализации и, соответственно, длиной. Поэтому число хроматиновых нитей в соматических клетках должно соответствовать диплоидному набору хромосом. Хроматин - это функционально активное состояние хромосом!

Хроматин, также как и хромосома, неоднороден по своей структуре. Различают два типа хроматина: эухроматин и гетерохроматин, которые морфологически и функционально отличаются друг от друга. Эухроматин - это деспирализованные и функционально активные участки хроматина, в этих участках интенсивно происходят процессы транскрипции. Гетерохроматин - более спирализованные и функционально неактивные участки хроматина. Эти участки содержат незначительное количество структурных генов и, по существу, представляют собой участки хроматина временно или постоянно выключенные из процессов регуляции клеточной активности.

В разных типах тканей и на различных этапах индивидуального развития чередование и расположение участков эухроматина и гетерохроматина определенной хроматиновой нити могут существенно отличаться. Возможно это является одним из механизмов клеточной дифференцировки.

Нарушения хромосомного уровня организации наследственного материала связаны с изменениями структуры отдельной хромосомы в результате воздействия мутагенного фактора. При этом могут возникать как внутрихромосомные (делеция, инверсия), так и межхромосомные перестройки (транслокация, транспозиция).

Факторы, влияющие на формирование признака

В 60-х годах ХХ века ученые-генетики предложили так называемую "Центральную догму молекулярной биологии", которая отражает последовательную цепь событий реализации гена в признак. Эта цепь событий может быть представлена следующей схемой:

Репликация Транскрипция Трансляция

ДНК <-----------> ДНК ------------------> РНК ----------------> БЕЛОК

Исследования генетиков в последующие годы позволили несколько расши-рить данную схему и на сегодняшний она может быть представлена следующим образом:

Схема реализации наследственной информации

Р Основные процессы

Е ГЕН

Г активизация

У транскрипции

Л

Я пре-информационная РНК

Т

О сплайсинг

Р транспорт

Н

Ы зрелая и - РНК

Е

посттрансляционные изменения

(пре-проинсулин)

формирование пространственной

структуры

Г полипептид

Е

Н включение небелковых

Ы компонентов

зрелый белок

активность

стабильность