Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

билеты привод

.pdf
Скачиваний:
22
Добавлен:
25.03.2016
Размер:
3.09 Mб
Скачать

гдет, —r сопротивление резисторавцепи якоря двигателя.

В этих условиях электромагмоментитныйстанет отрицательным.

Под действием тормозящего— моментаMт,частота вращения якоря умень достигнув нулевого значения.Если в этот момент цепь якоря н произойдетреверсирование двигателя и егодействиемякорь подмомента, кото преждебыл тормозным, начнет вращениепротивоположную сторону. При двигатель перейдет в двигательный (основной) режим с отрица частоты вращения и вращающегота. моменВоизбежание нежелател реверсирования операцию торможения противовключением автом при нулевом значении частоты вращения цепь якоря отключалас

5.Логические элементы «и-не» и «или-не» КМОП. Принцип работы. Достоинства и недостатки.

Логические КМОП (КМДП) элементы "И"

Схема логического элемента "И-НЕ" на КМОП микросхемах практически совпадает с упрощенной схемой "И" на ключах с электронным управлением, которую мы рассматривали ранее. Отличие заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Принципиальная схема логического элемента "2И-НЕ", выполненного на комплементарных МОП транзисторах (КМОП), приведена на рисунке 3.

Рисунок 3. Принципиальная схема логического элемента "2И-НЕ", выполненного на комплементарных МОП транзисторах (КМОП)

В этой схеме можно было бы применить в верхнем плече обыкновенный резистор, однако при формировании низкого уровня сигнала схема постоянно потребляла бы ток. Вместо этого, в качестве нагрузки используются p- МОП транзисторы. Эти транзисторы образуют активную нагрузку. Если на выходе требуется сформировать высокий потенциал, то транзисторы открываются, а если низкий — то закрываются.

В приведённой на рисунке 2 схеме логического КМОП-элемента "И", ток от источника питания на выход КМОП-микросхемы будет поступать через один из транзисторов, если хотя бы на одном из входов (или на обоих сразу) будет присутствовать низкий потенциал (уровень логического нуля). Если же на обоих входах логического КМОП-элемента "И" будет присутствовать уровень логической

единицы, то оба p-МОП транзистора будут закрыты и на выходе КМОП микросхемы сформируется низкий потенциал. В этой схеме, так же как и в схеме, приведенной на рисунке 1, если транзисторы верхнего плеча будут открыты, то транзисторы нижнего плеча будут закрыты, поэтому в статическом состоянии ток КМОПмикросхемой от источника питания потребляться не будет.

Условно-графическое изображение КМОП логического элемента"2ИНЕ" показано на рисунке 4, а таблица истинности приведена в таблице 1. В таблице 1 входы обозначены как x1 и x2, а выход — F.

Рисунок 4. Условно-графическое изображение логического элемента "2И-НЕ"

Таблица 1. Таблица истинности КМОП-микросхемы, выполняющей логическую функцию "2И-НЕ"

x1

x2

F

 

 

 

0

0

1

 

 

 

0

1

1

 

 

 

1

0

1

 

 

 

1

1

0

 

 

 

Логические КМОП (КМДП) элементы "ИЛИ"

Логический элемент "ИЛИ", выполненный на КМОП транзисторах, представляет собой параллельное соединение ключей с электронным управлением. Отличие от упрощенной схемы "2ИЛИ", рассмотренной ранее, заключается в том, что нагрузка подключается не к общему проводу схемы, а к источнику питания. Вместо резистора в качестве нагрузки используются p-МОП транзисторы. Принципиальная схема логического элемента "2ИЛИ-НЕ", выполненного на комплементарных МОПтранзисторах приведена на рисунке 5.

Рисунок 5. Принципиальная схема логического элемента "ИЛИ-НЕ", выполненного на комплементарных МОП транзисторах

В схеме КМОП логического элемента "2ИЛИ-НЕ" в качестве нагрузки используются последовательно включенные p-МОП транзисторы. В ней ток от источника питания на выход КМОП микросхемы будет поступать только если все транзисторы в верхнем плече будут открыты, т.е. если сразу на всех входах будет присутствовать низкий потенциал (уровень логического нуля). Если же хотя бы на одном из входов будет присутствовать уровень логической единицы, то верхнее плечо двухтактного каскада, собранного на КМОП транзисторах, будет закрыто и ток от источника питания поступать на выход КМОП-микросхемы не будет.

Таблица истинности логического элемента "2ИЛИ-НЕ", реализуемая КМОП микросхемой, приведена в таблице 2, а условно-графическое обозначение этих элементов приведено на рисунке 6.

Рисунок 6. Условно-графическое изображение элемента "2ИЛИ-НЕ"

Таблица 2. Таблица истинности МОП микросхемы, выполняющей логическую функцию "2ИЛИ-НЕ"

x1

x2

F

 

 

 

0

0

1

 

 

 

0

1

0

 

 

 

1

0

0

 

 

 

1

1

0

 

 

 

В настоящее время именно КМОП-микросхемы получили наибольшее развитие. Причём наблюдается постоянная тенденция к снижению напряжения питания данных микросхем. Первые серии КМОП-микросхем, такие как К1561 (иностранный аналог C4000В) обладали достаточно широким диапазоном изменения напряжения питания (3..18В). При этом при понижении напряжения питания у конкретной микросхемы понижается её предельная частота работы. В дальнейшем, по мере совершенствования технологии производства, появились улучшенные КМОП-

микросхемы с лучшими частотными свойствами и меньшим напряжением питания, например, SN74HC.

6. Способы регулирования скорости асинхронных двигателей

Наиболее распространены следующие способы регулирования скорости асинхронного двигателя: изменение дополнительного сопротивления

цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.

Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора

Введение резисторов в цепь ротора приводит к увеличению потерь мощности и снижению частоты вращения ротора двигателя за счет увеличения скольжения, поскольку n = nо (1 - s).

Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.

Жесткость механических характеристик значительно снижается с уменьшением частоты вращения, что ограничивает диапазон регулирования до (2 - 3) : 1. Недостатком этого способа являются значительные потери энергии, которые пропорциональны скольжению. Такое регулирование возможно только для двигателя с фазным ротором.

Регулирование частоты вращения асинхронного двигателя изменением напряжения на статоре

Изменение напряжения, подводимого к обмотке статора асинхронного двигателя, позволяет регулировать скорость с помощью относительно простых технических средств и схем управления. Для этого между сетью переменного тока со стандартным напряжением U1ном и статором электродвигателя включаетсярегулятор напряжения.

При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент Мкр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения Uрет (рис. 3), а скольжение от Uрег не зависит.

Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора

Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре

Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора

Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.

Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до nкр.

Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.

Рис. 4. Схема замкнутой системы регулирования скорости тиристорный регулятор напряжения - асинхронный двигатель (ТРН - АД)

Замкнутая схема управления асинхронным двигателем, выполненным по схеме тиристорный регулятор напряжения - электродвигатель позволяет регулировать

скорость асинхронного двигателя с повышенным скольжением (такие двигатели применяются в вентиляционных установках).

Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения

Так как частота вращения магнитного поля статора nо = 60f/р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость nо магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.

Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.

Рис. 5. Схема частотного электропривода

Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании

С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.

Частотное регулирование скорости асинхронного двигателя позволяет изменять частоту вращения в диапазоне (20 - 30) : 1. Частотный способ является наиболее перспективным для регулирования асинхронного двигателя с короткозамкнутым ротором. Потери мощности при таком регулировании невелики, поскольку минимальны потери скольжения.

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.

Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBTтранзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты Iвых и выходного напряжения осуществляется за счет высокочастотной широтноимпульсной модуляции.

Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов

Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.

Из выражения nо = 60f/р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения nо магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.

Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.

Рис. 7. Схемы переключения обмоток асинхронного двигателя: а - с одинарной звезды на двойную; б - с треугольника на двойную звезду

Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.

7. Основные характеристики синхронного двигателя

Угловая характеристика.

Зависимость между электромагнитным моментом синхронного двигателя M и углом рассогласования Θ, т.е. М=ƒ(Θ), называется угловой характеристикой. Электрическая активная мощность P1, потребляемая трехфазным синхронным двигателем из сети, равна утроенной фазной мощности статора P1=3UcIcosφ. Если пренебречь потерями, которые относительно малы, то эта потребляемая активная мощность равна электромагнитной мощности Рэм, передаваемой от статора в ротор: P1 ≈ Pэм=3E0Icosψ где ψ - угол сдвига фаз между током I и ЭДС Е0. Из рассмотрения на векторной диаграмме (рис.2.148 б) треугольников Оса и acb следует, отрезок ас = muUcsinΘ = muIxсинcosψ. Выразим отсюда значение Icosψ и подставим его в уравнение для Pэм. Получаем для механической мощности на валу двигателя

Pмех≈Pэм=(3E0UcsinΘ)/(Xсин)=PmsinΘ (11)

Механический момент на валу двигателя связан с мощностью известным соотношением

M=Pмех/ω=(3E0UcsinΘ)/(ωXсин)=MmsinΘ (12)

где ω=2πn0/60 - синхронная угловая скорость вращения ротора; М=(3E0UcsinΘ)/(ωXсин) - максимальный момент, развиваемый двигателем.

При постоянных значениях напряжения Uc, угловой скорости ω и синхронного сопротивления Хсин максимальный момент двигателя Мm зависит только от ЭДС Е0, т. е. от тока возбуждения ротора Iв. А если ток возбуждения тоже оказывается постоянным, то электромагнитный момент двигателя оказывается зависимым только от угла Θ. Эта

зависимость (12) является синусоидальной и называется угловой характеристикой синхронного двигателя (рис. 2.149)

Рис.2.149. Угловая характеристика синхронного двигателя.

Угловая характеристика позволяет проанализировать процессы в двигателе при изменении нагрузки на валу ротора. При появлении момента сопротивления Mс на валу двигателя ротор притормаживается, угол нагрузки Θ увеличивается и в соответствии с угловой характеристикой увеличивается вращающий момент двигателя М. При равенстве М=Мс наступает новый установившийся режим. При номинальном моменте двигателя Мном соответствующий угол Θном = 25 -30°. При Мс > Мmaх ротор отстает больше чем на максимально допустимый угол Θ = π/2, момент двигателя начнет уменьшаться, ротор будет замедляться вплоть до полной остановки. Этот процесс называется выпадением двигателя из синхронизма, при котором машина должна быть отключена от сети.

U-образная характеристика.

Это зависимость тока статора от тока возбуждения ротора I=ƒ(Iв), когда момент на валу двигателя М= const.

Рис.2.150. Векторные диаграммы для фазы обмотки статора синхронного двигателя при разных токах.

Рис.2.151. U-образные характеристики синхронного двигателя.

Допустим, что двигатель работает при напряжении статора Uc = const и угловой скорости ω = const. Тогда из формулы (12) при постоянстве момента

M=(3UcE0sinΘ)/(ωXсин)=const

следует

E0sinΘ=const (13)

Полученное соотношение показывает, что при любом токе возбуждения ротора Iв (любой ЭДС Е0) все проекции вектора E0 на линию, перпендикулярную вектору Uс, одинаковы. Следовательно, годографом вектора E0 является прямая а-b, параллельная вектору Uc и отстоящая от него на расстоянии E0sinΘ. На рис. 2.150 построены векторные диаграммы двигателя при трех различных токах возбуждения. При большей ЭДС

E03 (перевозбуждение машины и наименьший угол Θ3) ток статора I3опережает напряжение Uc на угол φ3 т е. двигатель ведет себя как реактивный емкостной элемент. Поэтому двигатель потребляет из сети (вернее отдает) емкостную реактивную отрицательную мощность

Q1=Qc=3UcI3sinφ3<0 (14)

Этот режим работы двигателя весьма ценен, так как его емкостной ток статора компенсирует индуктивные токи в сети от большинства других потребителей и тем самым улучшает cosφ всей сети.

При меньшей ЭДС E02 ток статора I2 совпадает по фазе с напряжением Uc (в этом случае угол Θ2 > Θ3) и двигатель работает как активный элемент, потребляя из сети только активную электрическую мощность. Ток возбуждения, при котором cosφ = 1 обычно считается номинальным Iвн. И, наконец, при самой маленькой ЭДС E01 <

Uc (недовозбуждение машины и самый большой угол Θ1) двигатель работает с отстающим током статора I1, который имеет индуктивную составляющую. Поэтому потребляемая двигателем из сети реактивная мощность положительна

Q1=QL=3UcI1sinφ1>0 (15)