Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТИиП лекции и задания ч1.doc
Скачиваний:
42
Добавлен:
03.11.2018
Размер:
997.38 Кб
Скачать

Вопросы для самопроверки 3 (а) Дать кратко письменные ответы:

  1. Какие сенсоры мы относим к классу "механических"?

  2. Назовите 4-6 видов механических сенсоров.

  3. По какому признаку подразделяем мы механические сенсоры на виды?

  4. Какие новые возможности для совершенствования механических сенсоров предоставляют микросистемные технологии?

  5. Какие сенсоры называют "деформационными"?

  6. Назовите 4-6 видов деформационных чувствительных элементов.

  7. Основные виды сенсоров линейного перемещения.

  8. Что такое "инклинометр"? Какие виды инклинометров Вы знаете?

  9. Что такое Энкодер?

3.4 Акселерометры

Сенсоры, которые реагируют на ускорение и измеряют его, называют акселерометрами. Различают сенсоры линейного и углового ускорения.

Линейные акселерометры

Акселерометр, который измеряет линейное ускорение, т.е. ускорение поступательного движения тела, состоит из инертной массы М, упругого элемента У и демпфера Д (рис. 3.2). Конструкция акселерометра должна быть такой, чтобы инертная масса М могла перемещаться лишь вдоль одной прямой, которую называют осью акселерометра. В контролируемом объекте, движущемся с ускорением а в направлении оси акселерометра, на массу М действует сила инерции, которая согласно второму закону Ньютона равняется Ма. Под действием этой силы инертная масса М приходит в движение, деформируя упругий элемент У, который противодействует движению. Чтобы в этой механической системе не возникали продолжительные колебания, используется демпфер Д, который тоже оказывает сопротивление движению инертной массы М с силой, пропорциональной скорости ее движения, и превращает энергию колебательного движения в тепло.

Рис. 3.2.  Принципиальная механическая схема акселерометра

Движение инертной массы М описывается дифференциальным уравнением 2-го порядка:

(3.1)

где – отклонение инертной массы М от положения равновесия; – коэффициент затухания, обусловленный демпфированием; – коэффициент жесткости упругого элемента; – текущее ускорение объекта, на котором установлен акселерометр.

Демпфер обычно регулируют так, чтобы коэффициент затухания достиг критического значения. В этом случае время реакции акселерометра на изменение ускорения оказывается наименьшим, и даже при скачкообразном изменении ускорения колебания вокруг нового положения равновесия не возникают. Чтобы определить ускорение , достаточно измерить отклонение от положения равновесия или силу , которая действует на упругий элемент.

Таким образом, инертная масса М обеспечивает преобразование первичного информационного сигнала в виде линейного ускорения в механическое перемещение или в силу деформации упругого элемента. Упругий элемент обеспечивает линейность или, по крайней мере, взаимную однозначность преобразования. А демпфер предотвращает возникновение длительных колебательных процессов. Получается, что все они являются необходимыми составными элементами акселерометра.

На рис. 3.3 показана конструкция емкостного акселерометра, изготовленного с использованием МСТ. В кристалле кремния 1 вытравлены участки 2 так, что значительная инертная масса 3 механически отделена от других частей акселерометра. Она соединена с ними лишь тонкими перемычками 4, которые играют роль упругих элементов. На небольшом расстоянии (~ 10 мкм) от кристалла кремния сверху и снизу расположены металлические электроды 5 и 6. Роль демпфера играет вязкая непроводящая жидкость, которой заполняется пространство между электродами и кремнием.

Рис. 3.3.  Конструкция емкостного акселерометра

Инертная масса 3 в такой конструкции может перемещаться только по вертикали. Электрические ёмкости между ней и верхним (нижним) электродами включены в противоположные плечи электрической мостовой схемы переменного тока. Её балансируют так, чтобы при отсутствии ускорения сигнал на выходе равнялся нулю. Когда объект, на котором установлен акселерометр, движется с ускорением, направленным вдоль оси сенсора, инертная масса 3 смещается из положения равновесия, вследствие чего одна из емкостей возрастает, а другая уменьшается. Из-за нарушения баланса на выходе мостовой схемы появляется напряжение соответствующего знака и тем большее, чем больше ускорение. Мостовую электрическую схему, необходимые электронные ключи, усилители, элементы термокомпенсации, – все, что требуется для обработки сигналов и калибровки акселерометра, – формируют ныне методами МСТ(микросистемной технологии) на том же кристалле кремния.

В описанной конструкции акселерометра ускорение, которое и является здесь первичным информационным сигналом, сначала превращается в линейное перемещение инертной массы. Перемещение, в свою очередь, преобразуется в изменение емкости верхнего и нижнего конденсаторов, а последнее – в электрический сигнал.

В пьезорезистивных акселерометрах измеряется не линейное перемещение инертной массы, а сила, которая действует на упругий элемент. Для измерения этой силы в упругих элементах формируют кремниевые пьезорезисторы.

Угловые акселерометры

Для измерения угловых ускорений требуется ротор 1 с достаточно большим моментом инерции (рис. 3.4) относительно оси вращения 2. Этому вращению должен противодействовать упругий элемент закручивания 3, который создает момент силы, пропорциональный углу закручивания. И также нужен демпфер, который гасит энергию возникающих крутильных колебаний. Тогда в случае возникновения углового ускорения контролируемого объекта в направлении оси акселерометра, ротор 1 под действием момента инерции поворачивается на определенный угол.

Рис. 3.4.  Механическая схема углового акселерометра: 1 - ротор; 2 - ось вращения; 3 - упругий элемент; 4 - нижняя опора; 5 - верхняя опора

Вращение ротора описывается дифференциальным уравнением, аналогичным (4.1), в котором массу надо заменить на момент инерции ротора, линейное смещение на угол поворота, а линейное ускорение – на угловое ускорение. Роль демпфера играет регулируемый момент сил трения между осью ротора и опорами. Измеряя угол закручивания или момент силы на упругом элементе, можно определить величину углового ускорения.

С использованием микросистемных технологий угловые акселерометры нынче тоже делают в микроминиатюрном исполнении.

3.5 Вибрационные измерительные сенсоры

В этих сенсорах первичным информационным сигналом является изменение состояния механических колебаний тела или системы тел. Механические колебательные системы могут быть очень чувствительными к тем или иным факторам воздействия, чем и пользуются при построении вибрационных сенсоров.

В разделе "Электрические сенсоры" рассмотрены методы возбуждения незатухающих механических и электрических колебаний пьезоэлектрического кристалла при синхронной подкачке энергии, например, через транзистор с использованием положительной обратной связи. Колебания эти происходят на собственной резонансной частоте кристалла, которая обычно лежит в диапазоне единиц-десятков мегагерц и зависит от его геометрических размеров и массы. Если последние изменяются, то меняется и частота колебаний.

Для компенсации влияния изменений температуры и других помех рядом устанавливают два одинаковых пьезоэлектрических вибратора. Один из них – опорный – остается вне влияния, а на другой действует контролируемый фактор. Для определения величины влияния этого фактора измеряется разность частот колебаний измерительного и опорного вибраторов. Она практически не зависит от изменения температуры и от других сторонних помех, одинаково влияющих на частоту обоих вибраторов.

Чаще всего влияющим фактором является добавление на пьезоэлемент незначительной массы, величину которой надо определить. Тогда такой вибрационный сенсор работает как микровесы, чувствительность которых составляет порядка 1 мкг. Изменение частоты (в Гц) в рабочем интервале обычно описывают формулой

где – исходная частота колебаний (МГц); – прирост массы (г); – площадь электрода пьезокристалла (см2).

(3.3)

Если размерность задана в Международной системе единиц СИ, то надо использовать следующую формулу:

где – в Гц; –в кг; – в м2.

Если на поверхность двух пьезоэлектрических кристаллов нанести специфический рецепторный слой – тонкую пленку материала, который избирательно адсорбирует (присоединяет) молекулы какого-то газа, и обеспечить контакт одного из кристаллов с атмосферой, то в результате абсорбции молекул соответствующего газа масса этого кристалла несколько возрастает. Соответственно изменяется и частота его собственных колебаний. Измеряя разность частот колебаний, можно определять удельное содержание соответствующего газа в атмосфере. Например, если на поверхность кристалла нанести тонкую пленку золота, то сенсор становится чувствительным к наличию в окружающей атмосфере паров ртути. Если пары ртути присутствуют, то ее атомы адсорбируются золотой пленкой, образуя амальгаму. Масса пленки несколько возрастает, что можно выявить по изменению частоты механических и электрических колебаний пьезокристалла. Естественно, что масса адсорбированных паров зависит от удельного содержания соответствующего газа в контролируемой среде и от времени "экспозиции".

Кантилеверы

С использованием современных микросистемных технологий механические колебательные системы удается теперь выполнять в удивительно малых размерах. Особенно популярными в этой области стали так называемые кантилеверы (сantilever) – закрепленные на одном конце упругие длинные балки, напоминающие по форме трамплины, с которых спортсмены прыгают в воду. В качестве примера, на рис. 3.5 показаны три кантилевера 1, сформированные методами МСТ в кристалле кремния 2.

Рис. 3.5

  Пример конструкции кремниевых кантилеверов: 1 - кантилеверы; 2 - основной объем кремния; справа – увеличенное изображение кантилевера; 3 - чувствительная зона; 4 - пьезорезистор; 5 и 6 - электроды для возбуждения и поддержания механических колебаний

Справа один из кантилеверов показан в увеличенном виде. На его верхней поверхности формируют чувствительную зону 3 и пьезорезистор 4, а снизу – электрод 5. Для возбуждения и поддержания незатухающих механических колебаний кантилеверов 1 используют обычно электростатические силы, создаваемые подачей переменного напряжения между кантилевером и электродом возбуждения 6, сформированным на подложке из кремния.

. Необходимую положительную обратную связь обеспечивают пьезорезисторы 4, формируемые вблизи закрепленного конца кантилевера, где сосредоточены наибольшие деформации. Механические колебания автоматически поддерживаются на резонансной частоте свободных колебаний кантилевера. Обычно эта частота составляет несколько мегагерц. Возбуждение и поддержание незатухающих механических колебаний кантилеверов можно осуществлять также другими способами: магнитным, электромагнитным и т.д.

На чувствительную зону 3 наносят "рецепторный слой" – покрытие, избирательно чувствительное к контролируемому химическому веществу или к определенному белку, вирусу либо к другому аналиту. Если этот аналит присутствует в среде, с которой контактирует кантилевер (газ, жидкость), то некоторые его атомы (молекулы, частицы) химически связываются с чувствительным покрытием 3. Из-за вызываемого этим незначительного изменения массы частота механических колебаний кантилевера изменяется. Соответственно изменяется и частота сигналов от пьезорезистора 4. Эти сигналы воспринимаются и обрабатываются электронными схемами, которые сформированы в том же кристалле кремния. Поскольку собственная масса кантилевера очень мала и фиксируются даже очень незначительные изменения частоты, то чувствительность таких вибрационных сенсоров оказывается достаточно высокой.

Виброанализаторы

Свою собственную резонансную частоту имеют не только пьезокристаллы, мембраны, кантилеверы. Каждая механическая конструкция имеет свои резонансные частоты, свои характерные колебательные свойства. И при любых механических повреждениях или деформациях картина их собственных колебаний изменяется. Это создает принципиальную возможность по изменению картины механических колебаний обнаруживать нежелательные изменения и дефекты, которые появились в конструкции. Научно-техническую дисциплину, которая этим занимается, называют вибродиагностикой, а приборы для измерения и анализа механических колебаний – виброметрами и виброанализаторами.

3.6 Хроматографические сенсоры

Когда надо выяснить или контролировать химический состав смеси веществ с достаточно близкими физическими и химическими свойствами, нынче широко применяют метод хроматографии. Хроматографические сенсоры мы относим к классу механических потому, что в них первичные сигналы появляются вследствие механического перемещения молекул и соответствующих веществ относительно неподвижной основы (фазы). Классическая реализация этого метода схематически показана на рис. 3.6 слева.

Рис. 3.6.  Метод хроматографии. Слева: 1 – хроматографическая колонка; 2 – сорбент; 3 – воронка; 4 – смесь веществ; 5 – доливание жидкости; 6 – детектор количества аналита; справа – вид хроматограммы

В хроматографическую колонку 1, заполненную сорбентом 2, через воронку 3 вводят пробу контролируемой смеси 4. Затем понемногу доливают жидкость 5, которая растворяет и захватывает с собой смесь 4 и начинает просачиваться сквозь сорбент 2 вниз.

Пусть смесь состоит из веществ А, Б и В, и они несколько по-разному связываются с сорбентом 2 и с жидкостью 5, протекающей вниз сквозь колонку. Тогда и скорость переноса этих веществ вниз вдоль колонки 1 оказывается несколько разной. И они в ходе продвижения постепенно разделяются в пространстве. Вещество В, у которого связь с жидкостью 5 наиболее сильная по сравнению со связью с сорбентом 2, продвигается быстрей всего и достигает конца колонки первым. На выходе из колонки 1 устанавливают детектор 6, с помощью которого определяют количество вещества, выходящего из колонки за единицу времени. Следующим выходит вещество Б, а последним – вещество А, у которого связь с жидкостью 5 наиболее слаба по сравнению со связью с сорбентом 2.

На выходе детектора 6 записывается зависимость количества вещества, выходящего из колонки, от времени. Ее принято называть хроматограммой. Для рассмотренного примера она показана на рис. 3.6 справа. Хроматограмма наглядно показывает количество компонентов в контролируемой смеси и ее относительный состав. Для надежности хроматографическую колонку предварительно калибруют по интересующим пользователя компонентам, пропуская через колонку смеси заранее точно известного состава. Чем больше длина колонки, тем больше разделяются компоненты смеси, тем выше разрешающая способность хроматографического метода. Однако при этом возрастает и время анализа.

Описанный вариант метода называют "колонковой" хроматографией. Известны и другие варианты хроматографического разделения веществ: на фильтровальной бумаге или на ткани, в тонких слоях сорбента, нанесенных на какую-либо основу, в капиллярах.