Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Определение предела функции.docx
Скачиваний:
3
Добавлен:
12.11.2018
Размер:
780.12 Кб
Скачать

4. Производная функции

Пусть функция определена в точке и ее окрестности. Если существует конечный предел

, (3)

то этот предел называется производной функции в точке и обозначается или .

При существовании односторонних пределов или говорят о существовании односторонних производных.

Функция, имеющая в каждой точке промежутка конечную производную, называется дифференцируемой функцией на этом промежутке.

Вычисляется производная с использованием таблицы производных и согласно правилам дифференцировании.

Правила дифференцирования

const

0

  1. .

  2. .

  3. .

  4. .

  5. .

  6. (дифференцирование сложной функции)/

  7. .

АЛГОРИТМ вычисления производных:

  • Найти последнее действие (функцию).

  • Применить формулы I–V.

  • Применить таблицу производных.

Замечание. Выражения ,

следует предварительно преобразовать по формулам: ;

; ;

Производная от первой производной называется второй производной или производной второго порядка и обозначается или . Аналогично определяются производные более высоких порядков.

Геометрический смысл производной. Пусть функция непрерывна на промежутке в окрестности точки , а график функции имеет в этой точке касательную, не параллельную оси . Тогда

, (4)

где  – угол между положительным направлением оси и касательной (рис. 1).

Рис. 1

Уравнение касательной к графику функции в точке имеет вид

. (5)

Пример 3. Найти производную функции в точке .

Решение. . .

Пример 4. Найти производную функции в точке .

Решение. Заданная функция – сложная. Используем формулу дифференцирования сложной функции.

Тогда .

Правило Лопиталя

Теорема. Пусть функции 1)и определены в окрестности точки и существуют конечные производные, 2) , 3) существуют конечные производные и , причем , 4) существует предел , Тогда

. ●

Здесь приведена одна из теорем Лопиталя. Аналогичное правило вычисления предела справедливо д с неопределенностью .

Примеры вычисления пределов с помощью правила Лопиталя:

1. ,

2.,

3. .

Во втором примере мы применили правило Лопиталя 4 раза. В третьем примере правило Лопиталя не применимо, так как не существует предела производных. Нет лекарства от всех бед. Предел же легко вычисляется с использованием теорем и равен единице.

Рекомендуем запомнить пределы:

, .