Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. Коллоквиум. Ответы на теорию.docx
Скачиваний:
17
Добавлен:
15.11.2018
Размер:
382.58 Кб
Скачать

6.2. Псевдовектор бесконечно малого поворота

При повороте тела на угол dφ, вводят псевдовектор бесконечно малого поворота . В правой системе координат направление  определяют правилом правого винта:винт, расположенный вдоль оси, вращается вместе с телом, направление его поступательного движения определяет направление псевдовектора. В левой системе координат направление псевдовектора изменится на обратное, истинный вектор при этом не меняет направления.

6.3. Угловая скорость.

,   или    .       Псевдовектор  направлен так же, как и псевдовектор , (6.2).

      6.4. Угловое ускорение (сравните с 3.10) .

6.5. Связь линейной скорости материальной точки твердого тела и угловой скорости

     

откуда

6.6. Связь линейного ускорения материальной точки твердого тела с угловой скоростью и угловым ускорением Продифференцируем  по времени:

,

,

из   ,  используя 

.

Из    ,   заменяя ,  получим

.

4. При прямолинейном движении векторы скорости и ускорения совпадают с направлением траектории. Рассмотрим движение материальной точки по криволинейной плоской траектории. Вектор скорости в любой точке траектории направлен по касательной к ней. Допустим, что в т.М траектории скорость была , а в т.М1 стала . При этом считаем, что промежуток времени при переходе точки на пути  из М в М1 настолько мал, что изменением ускорения по величине и направлению можно пренебречь. Для того, чтобы найти вектор изменения скорости , необходимо определить векторную разность:

Для этого перенесем  параллельно самому себе, совмещая его начало с точкой М. Разность двух векторов равна вектору, соединяющему их концы  равна стороне АС МАС, построенного на векторах скоростей, как на сторонах. Разложим вектор  на две составляющих АВ и АД, и обе соответственно через  и . Таким образом вектор изменения скорости  равен векторной сумме двух векторов:

По определению:

(1.15)

Тангенциальное ускорение  характеризует быстроту изменения скорости движения по численному значению и направлена по касательной к траектории.

Следовательно

(1.16)

Нормальное ускорение  характеризует быстроту изменения скорости по направлению. Вычислим вектор:

Для этого проведем перпендикуляр через точки М и М1 к касательным к траектории Точку пересечения обозначим через О. При достаточно малом  участок криволинейной траектории можно считать частью окружности радиуса R. Треугольники МОМ1 и МВС подобны, потому, что являются равнобедренными треугольниками с одинаковыми углами при вершинах. Поэтому:

или

Но , тогда:

Переходя к пределу при  и учитывая, что при этом , находим:

 ,

(1.17)

Так как при  угол , направление этого ускорения совпадает с направлением нормали к скорости , т.е. вектор ускорения  перпендикулярен . Поэтому это ускорение часто называют центростремительным.

Полное ускорение определяется векторной суммой тангенциального нормального ускорений Так как векторы этих ускорений взаимноперпендикулярны, то модуль полного ускорения равен:

(1.18)

Направление полного ускорения определяется углом между векторам  и :

5. Момент силы — производная по времени от момента импульса,

 ,

где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

_______________________________________________________________

6. И́мпульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что сумма импульсов всех тел (или частиц)замкнутой системы й есть величина постоянная.

7. Абсолю́тно неупру́гий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.

Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Энергия, конечно же, никуда не исчезает, а переходит в тепловую.

Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики.

Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков.

Абсолютно упругий удар может выполняться совершенно точно при столкновениях элементарных частиц низких энергий. Это следствие принципов квантовой механики, запрещающей произвольные изменения энергии системы. Если энергии сталкивающихся частиц недостаточно для возбуждения их внутренних степеней свободы, то механическая энергия системы не меняется. Изменение механической энергии может также быть запрещено какими-то законами сохранения (момента импульса, чётности и т. п.). Надо, однако, учитывать, что при столкновении может изменяться состав системы. Простейший пример — излучение кванта света. Также может происходить распад или слияние частиц, а в определённых условиях — рождение новых частиц. В замкнутой системе при этом выполняются все законы сохранения, однако при вычислениях нужно учитывать изменение систем

8. Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы(сил) и от перемещения точки(точек) тела или системы

Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

__________________________________________________________________

9.Работа в поле консервативных сил равна 0,и не зависит от траектории движения.

______________________________________________________________

11 Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии..

_______________________________________________________________

12. Произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку

 ,

13.

14. Момент импульса тела относительно оси вращения

Момент импульса материальной точки относительно точки O определяется векторным произведением , где  — радиус-вектор, проведенный из точки O,  — импульс материальной точки.

15. Момент силы относительно точки О - это вектор, модуль которого равен произведению модуля силы на плечо - кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой стрелке.

Если известен радиус-вектор r⃗  точки приложения силы F⃗  относительно точки О, то момент этой силы относительно О выражается следующим образом:

M⃗ O(F⃗ )=r⃗ ×F⃗ .

Действительно, модуль этого векторного произведения:

|M⃗ O|=|r⃗ ×F⃗ |=|r⃗ ||F⃗ |sinα.

_________

Момент силы относительно оси

Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку называется моментов силы относительно оси.

Момент силы относительно оси вычисляется как момент проекции силы F⃗  на плоскость Π, перпендикулярную оси, относительно точки пересечения оси с плоскостью Π:

Mz(F⃗ )=Mz(F⃗ Π)=±FΠh.

Знак момента определяется направлением вращения, которое стремится придать телу сила F⃗ Π. Если, глядя по направлению оси Oz сила вращает тело по часовой стрелке, то момент берется со знаком ``плюс'', иначе - ``минус''.

___________________________________________________________________

  • 16. Кинетическая энергия вращательного движения

где Iz — момент инерции тела относительно оси вращения. ω — угловая скорость

17. Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства.

___

Пока гироскоп неподвижен, его без особых усилии можно повернуть вокруг любой оси. Если же гироскоп привести в быстрое вращение относительно оси 00 и после этого пытаться повернуть подвес, то ось гироскопа стремится сохранить свое направление неизменным. Причина такой устойчивости вращения связана с законом сохранения момента импульса. Так как момент внешних сил мал, то он не в состоянии заметно изменить момент импульса гироскопа. Ось вращения гироскопа, с направлением которой вектор момента импульса почти совпадает, не отклоняется далеко от своего положения, а лишь дрожит, оставаясь на месте.

 

       Это свойство гироскопа находит широкое практическое применение. Летчику, например, необходимо всегда знать положение истинной земной вертикали по отношению к положению самолета в данный момент. Обыкновенный отвес для этой цели не годится: при ускоренном движения он отклоняется от вертикали. Применяют быстро вращающиеся гироскопы на кардановом подвесе. Если ось вращения гироскопа установить так, чтобы она совпадала с земной вертикалью, то, как бы самолет ни изменял свое положение в пространстве, ось сохранит направление вертикали. Такое устройство носит название гирогоризонта.

Если гироскоп находится во вращающейся системе, то его ось устанавливается параллельно оси вращения системы. В земных условиях это проявляется в том, что ось гироскопа в конце концов устанавливается параллельно оси вращения Земли, указывая направление север — юг. В морской навигации такой гироскопический компас является совершенно незаменимым прибором.

   Подобное, на первый взгляд странное поведение гироскопа тоже находится в полном согласии с уравнением моментов и законом сохранения момента импульса.

18.  Пусть система  движется относительно системы  со скоростью ; аналогично, система  движется относительно  со скоростью . Фактически, релятивистский закон сложения скоростей определяет относительную скорость того движения, в котором наблюдатель сам не участвует. Скорость движения системы  относительно  определится так: