Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЦМ-2.doc
Скачиваний:
57
Добавлен:
01.12.2018
Размер:
505.34 Кб
Скачать

Производство криолита и фтористых солей

Фтористые соли необходимы для приготовления расплавленного электролита – среды для растворения и электролиза глинозема. Основным компонентом электролита для получения алюминия является криолит – двойная соль фтористого натрия и фтористого алюминия Na3AlF6 (3NaF·AlF3). Состав криолита характеризуется криолитовым отношением, т.е. молярным отношением числа молей фторидов натрия и алюминия. В чистом криолите криолитовый модуль равен 3, в промышленности электролиты обогащают фторидом алюминия, поэтому для них величина криолитового модуля колеблется от 2,5 до 2,9.

Криолит встречается в природе, но промышленные месторождения встречаются только в Гренландии. Поэтому для нужд алюминиевой промышленности криолит и его составные компоненты получают искусственным путем из плавикового шпата CaF2.

Из природного плавикового шпата получают концентрат (до 96% CaF2), обычно с избытком фтористого алюминия.

Криолит и фтористые соли в нашей стране производят кислотным способом. Процесс осуществляется в две стадии: получение плавиковой кислоты и получение непосредственно криолита.

Получение HF

Концентрат плавикового шпата смешивают с крепкой серной кислотой и нагревают до 200 ºС в трубчатых вращающихся печах с целью разложения CaF2:

CaF2 + H2SO4 = CaSO4 + 2HF↑.

В результате образуются гипс и газообразный фтористый водород, который поглощается водой в вертикальных башнях. Получается раствор плавиковой кислоты, которую очищают с помощью соды от примесей, в частности от H2SiF6.

Получение криолита

В раствор плавиковой кислоты вводят определенные количества Al(OH)3 и соды и проводят так называемый процесс варки криолита в две стадии. Сначала получают фторалюминиевую кислоту по реакции:

6HF + Al(OH)3 = ↓Na3AlF6 + 3H2O.

Затем полученную кислоту нейтрализуют содой с получением криолита:

2H3AlF6 + 3Na2CO3 =↓2Na3AlF6 + 3H2O + 3CO2.

Криолит выпадает в осадок, отфильтровывается и промывается на барабанных вакуум-фильтрах. Отфильтрованный криолит просушивается в трубчатых сушилах при 130-160 ºС.

Для получения других фтористых солей (фтористого алюминия и фтористого натрия) плавиковую кислоту полностью нейтрализуют гидратом окиси алюминия (для AlF3) или содой (для NaF).

Кислотный способ имеет серьезные недостатки:

-высокая токсичность выделяющихся газов (HF и H2SiF6);

-необходимость дорогой кислотоупорной аппаратуры;

-низкое извлечение фтора в криолит.

Разработаны и другие способы производства криолита и фтористых солей, например щелочной, но промышленного применения они пока не имеют.

Электролитическое получение алюминия

Металлический алюминий получают путем электролиза глинозема, растворенного в расплавленном электролите, основным компонентом которого является криолит. Связано это с тем, что алюминий в электрохимическом ряду напряжений находится среди наиболее электроотрицательных металлов. Поэтому его электролитическое получение возможно только из электролитов, не содержащих более электроположительных по сравнению с алюминием ионов в своем составе. К таким электролитам относятся солевые расплавы щелочных и щелочноземельных элементов, обладающие достаточно хорошей растворимостью глинозема.

Основой электролита является система криолит-глинозем (Na3AlF6-Al2O3). Для снижения температуры плавления электролита и повышения его электропроводности, а также для улучшения смачиваемости анода в электролит вводят добавки – фтористые соли (AlF3, CaF2, LiF, MgF2), иногда NaCl. Количество добавок не должно превышать суммарно 6-10%.

Электрохимический процесс электролиза алюминия может быть описан следующими реакциями:

на катоде 2Al3+ + 6e → 2Al-;

на аноде 3О2- - 6e → 3О.

Выделяющийся на аноде атомарный кислород приводит к постепенному расходованию анода. Чтобы этого не происходило, нужно следить за концентрацией глинозема в электролите. При достаточной концентрации глинозема смачиваемость анода расплавом хорошая, быстрого сгорания анода не происходит.

1-кожух; 2-боковые угольные плиты; 3-угольные блоки (катодные); 4,5-токоподводы к электродам; 6-анод; 7-токоподводящие шины; 8-корка застывшего электролита; 9-глинозем; 10-шамотная футеровка

Рисунок 25 – Схема электролизной ванны для получения алюминия

Алюминиевый электролизер имеет прямоугольную форму (рисунок 25). Снаружи он заключен в металлический кожух. Внутренняя его футеровка выполнена из угольных плит и блоков. Подовые блоки одновременно являются катодом электролизера. Однако фактически катодные функции выполняет слой расплавленного алюминия, оседающий на подине, а катодные блоки работают как токоподводы. Внутренние размеры ванн – 3,8х10 м, глубина рабочего пространства ванны составляет около 0,5-0,6 м; погружение анодов в электролит невелико, только часть их находится в расплаве. Ток подводится к катоду с помощью стальных стержней. Угольный анод (иногда несколько) подвешен на стальных стержнях. Расстояние между анодом и слоем металлического алюминия поддерживается в пределах 40-50 мм.

Наиболее высокая температура развивается вблизи анода, т.е. в центральной части электролизера. На участках с пониженной температурой электролит затвердевает, образуя на боковых стенках гарнисаж, а на открытой верхней поверхности - корку.

Глинозем, необходимый для восполнения его убыли в электролите, периодически или непрерывно загружают на поверхностную корку, где он подогревается. Подача свежих порций глинозема в электролит производится путем пробивания специальным механизмом отверстия в корке, через которое очень «текучий» порошок глинозема быстро просыпается в ванну расплава и растворяется в нем.

При концентрации глинозема в электролите выше 1-2% напряжение на ванне обычно не превышает 4-4,3 В.

Однако снижение содержания А12О3 ниже 1% ведет к возникновению анодного эффекта, характеризующегося резким возрастанием напряжения на ванне до 30-40 В и повышением расхода электроэнергии. Вследствие разогрева электролита быстрее начинают расходоваться аноды, и интенсифицируется улетучивание составляющих электролита. Добавка новых порций глинозема прекращает анодный эффект.

Существуют электролизеры различных конструкций, но все они работают по одному принципу. Мощность электролизера 30-250 кА. Производительность современных электролизеров составляет 500-1200 кг Al в сутки. Расход электроэнергии 14-16 МВт·ч/т алюминия.

Жидкий алюминий-сырец извлекают один раз в сутки (из больших аппаратов через 2-5 суток) с помощью вакуум-ковшей (рисунок 26). Для этого в корке электролита пробивается отверстие, через которое в электролизер вводят заборную трубку вакуум-ковша. За счет создаваемого в ковше разряжения металл всасывается в ковш. Вакуум-ковш имеет емкость 1,5-5 т алюминия. Разряжение, создаваемое в ковше, примерно 70 кПа.

1-ковш; 2- заборная трубка

Рисунок 26 – Вакуум-ковш для извлечения алюминия из электролизной ванны