Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
крылов.docx
Скачиваний:
93
Добавлен:
22.12.2018
Размер:
449.19 Кб
Скачать

16. Жизненный цикл системы искусственного интеллекта и критерии перехода между этапами этого цикла

Жизненный цикл систем искусственного интеллекта сходен с жизненным циклом другого программного обеспечения и включает этапы и критерии перехода между ними, представленные в таблице 1.Таблица 1 – Этапы жизненного цикла систем искусственного интеллекта и критерии перехода между ними

Наименование

этапа

Критерии перехода

к следующему этапу

1

Разработка идеи и концепции системы

Появление (в результате проведения маркетинговых и рекламных мероприятий) заказчика или спонсора, заинтересовавшегося системой

2

Разработка теоретических основ системы

Обоснование выбора математической модели по критериям или обоснование необходимости разработки новой модели

3

Разработка математической модели системы

Детальная разработка математической модели

4

Разработка методики численных расчетов в системе:

4.1

– разработка структур данных

детальная разработка структур входных, промежуточных и выходных данных

4.2

– разработка алгоритмов обработки данных

разработка обобщенных и детальных алгоритмов, реализующих на разработанных структурах данных математическую модель

5

Разработка структуры системы и экранных форм интерфейса

Разработка иерархической системы управления системой, структуры меню, экранных форм и средств управления на экранных формах

6

Разработка программной реализации системы

Разработка исходного текста программы системы, его компиляция и линковка. Исправление синтаксических ошибок в исходных текстах

7

Отладка системы

Поиск и исправление логических ошибок в исходных текстах на контрольных примерах. На контрольных примерах новые ошибки не обнаруживаются.

8

Экспериментальная эксплуатация

Поиск и исправление логических ошибок в исходных текстах на реальных данных без применения результатов работы системы на практике. На реальных данных новые ошибки практически не обнаруживаются, но считаются в принципе возможными.

9

Опытная эксплуатация

Поиск и исправление логических ошибок в исходных текстах на реальных данных с применением результатов работы системы на практике. На реальных данных новые ошибки не обнаруживаются и считаются недопустимыми.

10

Промышленная эксплуатация

Основной по длительности период, который продолжается до тех пор, пока система функционально устраивает Заказчика. У Заказчика появляется необходимость внесения количественных (косметических) изменений в систему на уровне п.5 (т.е. без изменения математической модели, структур данных и алгоритмов)

11

Заказные модификации системы

У Заказчика формируется потребность внесения качественных (принципиальных) изменений в систему на уровне п.3 и п.4, т.е. с изменениями в математической модели, структурах данных и алгоритмах

12

Разработка новых версий системы

Выясняется техническая невозможность или финансовая нецелесообразность разработки новых версий системы

13

Снятие системы с эксплуатации

17. Связь семантической информационной модели с нейронными сетями

Семантиическая сеть — информационная модель предметной области, имеющая вид ориентированного графа, вершины которого соответствуют объектам предметной области, а дуги (рёбра) задают отношения между ними. Объектами могут быть понятия, события, свойства, процессы[1]. Таким образом, семантическая сеть является одним из способов представления знаний. В названии соединены термины из двух наук: семантика в языкознании изучает смысл единиц языка, а сеть в математике представляет собой разновидность графа — набора вершин, соединённых дугами (рёбрами). В семантической сети роль вершин выполняют понятия базы знаний, а дуги (причем направленные) задают отношения между ними. Таким образом, семантическая сеть отражает семантику предметной области в виде понятий и отношений.

Иску́сственныенейро́нныесе́ти (ИНС) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса [1]. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма[2]. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.

Семантическая информационная модель, как нелокальная нейронная сеть

Учитывая большое количество содержательных параллелей между семантической информационной моделью и нейронными сетями предлагается рассматривать данную модель как нейросетевую модель, основанную на системной теории информации. В данной модели предлагается вариант решения важных нейросетевых проблем интерпретируемости и ограничения размерности за счет введения меры целесообразности информации (системное обобщение формулы Харкевича), обеспечивающей прямой расчет интерпретируемых весовых коэффициентов на основе непосредственно эмпирических данных. Итак, в данной работе предлагается новый класс нейронных сетей, основанных на семантической информационной модели и информационном подходе. Для этих сетей предлагается полное наименование: "Нелокальные интерпретируемые нейронные сети прямого счета" и сокращенное наименование: "Нелокальные нейронные сети".

Нелокальная нейронная сеть является системой нелокальных нейронов, обладающей качественно новыми (системными, эмерджентными) свойствами, не сводящимися к сумме свойств нейронов. В такой сети поведение нейронов определяется как их собственными свойствами и поступающими на них входными сигналами, так и свойствами нейронной сети в целом, т.е. поведение нейронов в нелокальной нейронной сети согласовано друг с другом не только за счет их прямого и опосредованного синаптического взаимодействия (как в традиционных нейронных сетях), но за счет общего информационного поля весовых коэффициентов всех нейронов данной сети.