Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
с1.docx
Скачиваний:
9
Добавлен:
24.12.2018
Размер:
162.34 Кб
Скачать

Вопрос 19.

Комплексоны и их комплексы применяют при лечении различных металлоизбыточных и металлодефицитных состояний, связанных с заболеваниями, которые вызываются нарушениями обмена кальция, железа, меди и др. (рахит, психические заболевания, профилактика радиационных поражений).

Иногда длительное поступление в организм малых количеств ядовитых металлов приводит к их накоплению в различных внутренних органах и тканях, вследствие чего их концентрация в крови и моче существенно не повышена. Введение же комплексонов увеличивает выведение яда с мочой и тем самым указывает на его присутствие в организме. В таких случаях комплексоны можно использовать в целях диагностики. Иными словами, процесс комплексообразования приводит к нарушению установившегося равновесия между ионизированным металлом плазмы крови и металлом, содержащимся, например, в жировых тканях, а также в эритроцитах, печени, костной ткани и т.д.

Молекулы комплексонов практически не подвергаются расщеплению или какому-либо изменению в биологической среде, что является их важной фармакологической особенностью. Комплексоны нерастворимы в липидах и хорошо растворимы в воде, поэтому они не проникают или плохо проникают через клеточные мембраны, а следовательно, 1) не выводятся кишечником; 2) всасывание комплексообразователей происходит только при их инъекции (лишь пеницилламин принимают внутрь); 3) в организме комплексоны циркулируют по преимуществу во внеклеточном пространстве; 4) выведение из организма осуществляется главным образом через почки. Этот процесс происходит быстро. Так, уже через полтора часа после внутрибрюшинной инъекции в организме остается 15% введенной дозы тетацина, через 6 часов - 3%, а через двое суток - только 0,5%.Комплексоны малотоксичны, их токсическое действие проявляется в основном в повреждении слизистой оболочки тонкой кишки и почечных канальцев. При быстром вливании или введении больших количеств полиаминополикарбоновых кислот вследствие уменьшения содержания кальция в крови возможно нарушение возбудимости мышц и свертываемости крови.

Комплексные соединения- это, как правило, ярко окрашенные солеобразные вещества. Одним из первых были открыты разноцветные комплексные соли железа и кобальта. Весьма существенно, что многие биокатализаторы- ферменты также являются комплексными соединениями.

Комплексы в присутствии растворителя всегда в той или иной степени диссоциируют, т.е. разрушаются с образованием исходного иона металла и линганда. Очевидно, что ион металла будет находится не в свободном, а в сольватированном виде. В большинстве случаев в малополярных растворителях комплексные частицы диссоциируют в меньшей степени, чем вполярных, так как молекулы полярных растворителей ослабляют электрическое взаимодействие между ионом-комплексообразователем и лигандами. Если диссоциация комплекса протекает в воде, то в результате образуется аквакомплекс металла. Схематично процесс диссоциации комплексной части можно представить следующим образом:

[M(L)n]z-nx+mH2O = [M(H2Om)]z+ +nLx-

Прочность комплексных ионов и многих молекулярных комплексов сравнивают по отношению к воде, т. е. с прочностью аквакомплексов. Поэтому гидратированный ион металла условно считают «свободным», т. е. не связанным в комплексе, а уровнения диссоциации комплексов записывают без учета образования аквакомплексов, т. е. в следующем виде:

[M(L)n]z-nx= Mz+ + nLx-

Характеристикой прочности комплексных соединений является константа нестойкости:

a(Mz+)a(Lx-)

Kнест= --------------------------.

a([MLn]z-nx)

Чем меньше константа нестойкости комплексного соединения, тем оно прочнее; однако такая закономерность применима только к однотипным комплексам, т.е. имеющим одинаковое число лигандов во внутренней сфере. Комплексные частицы, имеющие в составе несколько лигандов, диссоциируют ступенчато, подобно многоосновным кислотам. Например:

  1. [Ag(NH3)2]+ = [Ag(NH3)]+ + NH3

  2. [Ag(NH3)]+ = Ag+ + NH3

Каждая из ступеней может быть охарактеризована константой нестойкости:

a([Ag(NH3)]+)a(NH3)

Kнест,1 =-----------------------------------------;

a([Ag(NH3)2]+)

Как и в большинстве других случаев, для приближенных расчетов вместо активностей обычно используют концентрации.

Общая константа нестойкости комплекса равна произведению констант нестойкости по степеням, как следует из термодинамики.

Для данного случая справедливо:

Kнест,1-2 = Кнест,нест,2.

Металлоферменты, или металлоэнзимы — общее собирательное название класса ферментов, для функционирования которых необходимо присутствие катионов тех или иных металлов. В подобном ферменте могут присутствовать несколько различных ионов металла. Катион металла при этом обеспечивает правильную пространственную конфигурацию активного центра металлофермента.

Примерами металлоферментов являются селен-зависимая монодейодиназа, конвертирующая тироксин в трийодтиронин, или железо-зависимые тканевые дыхательные ферменты.

Помимо принадлежности к классу ферментов, металлоферменты принадлежат также к обширному классу металлопротеидов — белков (не обязательно ферментов), в состав которых входят катионы металлов

.(принцип ЖМКО): кислотно-основные взаимодействия протекают таким образом, что "жесткие" кислоты предпочтительно связываются с "жесткими" основаниями, а "мягкие" кислоты - с "мягкими" основаниями. При оценке "жесткости" и "мягкости" кислот и оснований учитывают их хим. состав и электронное строение, а также сравнительную устойчивость образуемых ими кислотно-основных комплексов: А + :В D А : В, где А - кислота Льюиса, :В - основание, А : В - кислотно-основной комплекс. "Жесткие" кислоты - акцепторы с низкой поляризуемостью, высокой электроотрицательностью, трудно восстанавливаются, их незаполненные граничные орбитали имеют низкую энергию; "мягкие" кислоты - акцепторы с высокой поляризуемостью, низкой электроотрицательностью, легко восстанавливаются, их своб. граничные орбитали имеют высокую энергию. "Жесткие" основания - доноры с низкой поляризуемостью, высокой электроотрицательностью, трудно окисляются, их занятые граничные орбитали имеют низкую энергию; "мягкие" основания доноры с высокой поляризуемостью, низкой электроотрицательностью, легко окисляются, их занятые граничные орбитали имеют высокую энергию. Самая "жесткая" кислота - протон, самая "мягкая" CH3Hg+; наиб. "жесткие" основания - F и ОН-, наиб. "мягкие" I- и Н-. Сопоставление устойчивости кислотно-основных комплексов для разл. оснований по отношению к Н+ и CH3Hg+ , a также для кислот по отношению к F- и I- позволило разделить известные кислоты и основания на группы.Предпочтительное связывание "жестко-жестких" и "мягко-мягких" реагентов в рамках теории возмущения объясняется тем, что взаимод. между орбиталями с близкой энергией более эффективно, чем между орбиталями, разнящимися по энергии, т. е. подчеркивается преимущество электростатич. ("жестко-жесткого") или ковалентного ("мягко-мягкого") взаимодействия. Принцип ЖМКО используют для учета специфич. взаимод. и особенностей протекания конкурирующих процессов, для направленного создания экстрагентов, детоксикантов, лек.препаратов, а также объяснения преимуществ. типов связывания металлов в биохим. и геол. объектах. Принцип сформулирован Р. Пирсоном в 1963