Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
voprosy_33_semestr_2.docx
Скачиваний:
5
Добавлен:
21.04.2019
Размер:
510.31 Кб
Скачать

25.Различные виды уравнений плоскости.

Уравнение плоскости, проходящей через заданную точку, перпендикулярно данному вектору.

Пусть плоскость задана точкой M0(x0;y0;z0) и вектором , перпендикулярной этой плоскости.

Возьмем произвольную точку M(x;y;z) и составим вектор . При любом расположении точки М на плоскости Q , поэтому .

Уравнение плоскости, проходящей через три точки

К (х11) М (х22) N (x3;y3)

Возьмем на плоскости точку P (x;y;z).

Составим векторы:

Эти векторы лежат в одной плоскости, следовательно они компланарны:

Параметрические уравнения прямой.

Канонические уравнения прямой.

S(m;n;p) – направляющий вектор прямой L. M0(x0;y0;z0) – точка на прямой. соединяет M0 с произвольной точкой М.

Уравнение прямой в пространстве, проходящей через две точки.

M1(x1;y1;z1) M2(x2;y2;z2)

В качестве направляющего вектора можно задать вектор

Следовательно:

, тогда

Общее уравнение прямой.

Уравнение прямой как линию пересечения двух плоскостей. Рассмотрим:

Т.к. прямая перпендикулярна векторам n1 и n2 то направляющий вектор запишется как векторное произведение:

Угол между прямыми.

;

26.Взаимное расположение прямой и плоскости в пространстве.

Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке, см. следующие рисунки.

 

                                           рис.6.

    

                                           рис.7.

       

                                          рис.8.

Теорема. Пусть плоскость  задана общим уравнением

  ,а прямая L задана каноническими уравнениям или параметрическими уравнениями ,   , в которых  – координаты нормального вектора плоскости ,  – координаты произвольной фиксированной точки прямой L,    – координаты направляющего вектора прямой L. Тогда: 1) если , то прямая L пересекает плоскость  в точке, координаты которой  можно найти из системы уравнений

             ;           (7)

2) если  и , то прямая лежит на плоскости;

3) если  и , то прямая параллельна плоскости.

27.Взаимное расположение прямых в пространстве.

Возможны четыре различных случая расположения двух прямых в пространстве:

– прямые скрещивающиеся, т.е. не лежат в одной плоскости;

– прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;

– прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;

– прямые совпадают.

точки.

Перечисленным выше случаям взаимного расположения прямых и соответствуют следующие признаки:

– прямые и скрещивающиеся векторы не компланарны;

– прямые и пересекаются векторы компланарны, а векторы не коллинеарны;

– прямые и параллельные векторы коллинеарны, а векторы не коллинеарны;

– прямые и совпадают векторы коллинеарны.