Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по математике.docx
Скачиваний:
2
Добавлен:
22.04.2019
Размер:
933.78 Кб
Скачать

Достаточные условия существования локальных экстремумов

  • Пусть функция   непрерывна в   и существуют конечные или бесконечные односторонние производные  . Тогда при условии

x0 является точкой строгого локального максимума. А если

то x0 является точкой строгого локального минимума.

Заметим, что при этом функция не дифференцируема в точке x0

  • Пусть функция f непрерывна и дважды дифференцируема в точке x0. Тогда при условии

 и 

x0 является точкой локального максимума. А если

 и 

то x0 является точкой локального минимума.

ВОПРОС№27: Основные теоремы о дифференцируемых функциях.

Дифференци́руемая фу́нкция—это функция, имеющая дифференциал (линейная часть приращения функции.) . Дифференцируемая функция может быть хорошо приближена линейной функцией. Дифференцируемость является одним из фундаментальных понятий в математике и имеет большое число приложений как внутри неё, так и в естественных науках, широко использующих математический аппарат (на данном отрезке). 1.Теорема Ро́лля (теорема о нуле производной) утверждает, что Если вещественная функция непрерывна на отрезке [a;b] и дифференцируема на интервале (a;b) , принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю. 2.Теорема Лагранжа Если функция f: [a, b] → R непрерывна на сегменте [a, b] и имеет конечную или бесконечную производную во внутренних точках этого сегмента, то такое, что f(b) - f(a) = f'(ξ)(b - a). 3.Теорема Коши Если каждая из функций f и g непрерывна на [a, b] и имеет конечную или бесконечную производную на ]a, b[ и если, кроме того, производная g'(x) ≠ 0 на ]a, b[, то такое, что справедлива формула Если дополнительно потребовать, чтобы g(a) ≠ g(b), то условие g'(x) ≠ 0 можно заменить менее жестким.

ВОПРОС№30: Точки перегиба и способы их нахождения.

Точка называется точкой перегиба графика функции y = f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки , в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Другими словами, точка М называется точкой перегиба графика функции, если в этой точке существует касательная и график функции меняет направление выпуклости, проходя через нее.

необходимое условие перегиба.1.Пусть график функции y = f(x) имеет перегиб в точке и имеет при непрерывную вторую производную, тогда выполняется равенство .

2.абсциссами точек перегиба могут быть все из области определения функции, для которых и

Алгоритм нахождения точек перегиба функции.Находим все абсциссы возможных точек перегиба графика функции ( или и ) и выясняем, проходя через какие вторая производная меняет знак. Такие значения и будут абсциссами точек перегиба, а соответствующие им точки будут точками перегиба графика функции. Алгоритм нахождения точек перегиба функции.

ВОПРОС№31: Формула Тейлора. Разложение некоторых элементарных функций по формуле Тейлора.

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.

2) Пусть х- любое значение из этой окрестности, но х ¹ а.

Тогда между точками х и а найдется такая точка e, что справедлива формула(формула Тейлора):

выражение: называется остаточным членом в форме Лагранжа.

Пусть функция имеет в точке производные всех порядков до n-го включительно. Тогда для справедлива формула Тейлора: ,где , называется остаточным членом формулы Тейлора в форме Пеано; — бесконечно малая более высокого порядка малости, чем .

Разложение основных элементарных функций - Положив и вычислив соответствующие производные в нуле, получим формулы Тейлора для основных элементарных функций:

ВОПРОС№33: основные свойства неопределенного интеграла:

1) Производная неопределенного интеграла равна подынтегральной функции. Дифференциал от неопределенного интеграла равен подынтегральному выражению, т.е. (∫f(x)dx)′=f(x) d∫f(x)dx=f(x)dx

Доказательство:

∫f(x)dx=F(x)+C,

(∫f(x)dx)′=(F(x)+C)′=F′(x)+0=F′(x)=f(x),

d∫f(x)dx=(∫f(x)dx)′dx=f(x)dx

2) Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной, т.е. ∫dF(x)dx=F(x)+C.

Доказательство:

dF(x)=F′(x)dx=f(x)dx,

∫dF(x)dx=∫f(x)dx=F(x)+C.

3) Постоянный множитель можно выносить из под знака интеграла, т.е. ∫kf(x)dx=k∫f(x)dx,k(не равно) 0

Доказательство: Пусть F(x) -- первообразная для функции f(x), тогда

kF(x) -- первообразная для функции kf(x).

(kF(x))′=0+kF′(x)=kF′(x)=kf(x).

Таким образом

∫kf(x)dx=kF(x)+C=k(F(x)+C/k)=k(F(x)+C1)=k∫f(x)dx

4) Неопределенный интеграл от суммы(разности) двух функций равен сумме(разности) интегралов этих функций.

∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx

Распространяется на n слагаемых.

Доказательство:

d[∫f(x)dx±∫g(x)dx]=d∫f(x)dx±d∫g(x)dx=

=f(x)dx±g(x)dx=[f(x)±g(x)]dx.

ВОПРОС№34: Методы интегрирования.

Непосредственное интегрирование.

Пример.Найдите множество первообразных функции . Решение.Запишем функцию в виде . Так как интеграл суммы функций равен сумме интегралов, то Числовой коэффициент можно вынести за знак интеграла: Первый из интегралов приведен к табличному виду, поэтому из таблицы первообразных для показательной функции имеем . Для нахождения второго интеграла воспользуемся таблицей первообразных для степенной функции и правилом То есть, . Следовательно, где.

Интегрирование по частям.

Интегрирование по частям основано на представлении подынтегрального выражения в виде произведения и последующем применении формулы . Этот метод является очень мощным инструментом интегрирования. В зависимости от подынтегральной функции, метод интегрирования по частям иногда приходится применять несколько раз подряд до получения результата. Для примера найдем множество первообразных функции арктангенс. Пример.Вычислить неопределенный интеграл . Решение.Пусть , тогда Следует отметить, что при нахождении функции v(x) не прибавляют произвольную постоянную С. Теперь применяем формулу интегрирования по частям: Последний интеграл вычислим по методу подведения под знак дифференциала. Так как , то . Поэтому Следовательно, где . Ответ: .