Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
14 первых вопросов.doc
Скачиваний:
8
Добавлен:
22.04.2019
Размер:
626.18 Кб
Скачать

12.Асимптоты (вертикальные, наклонные) графика функции, вывод правила их нахождения. Виды асимптот графиков Вертикальная

Вертикальная асимптота — прямая вида   при условии существования предела  .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

Горизонтальная

Горизонтальная асимптота — прямая вида   при условии существования предела

.

]Наклонная

Наклонная асимптота — прямая вида   при условии существования пределов

Пример наклонной асимптоты

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен  ), то наклонной асимптоты при  (или  ) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела  , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при  , и из выше указанных замечаний следует, что

  1. Функция имеет или только одну наклонную асимптоту, или одну горизонтальную асимптоту, или одну наклонную и одну горизонтальную, или две наклонных, или две горизонтальных, либо же вовсе не имеет асимптот.

  2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

Нахождение асимптот Порядок нахождения асимптот

  1. Нахождение вертикальных асимптот.

  2. Нахождение двух пределов 

  3. Нахождение двух пределов  :

если   в п. 2.), то  , и предел   ищется по формуле горизонтальной асимптоты,  .

13.Определение комплексных чисел. Алгебраическая форма записи комплексного числа. Модуль, сопряженные комплексные числа.

Комплексные числа — расширение множества вещественных чисел, обычно обозначается  . Любое комплексное число может быть представлено как формальная сумма x + iy, где x и y — вещественные числа, i — мнимая единица, то есть одно из чисел, удовлетворяющих уравнению i2 = − 1

Определения

Формально комплексное число z — это пара вещественных чисел (x,y) со введёнными на них следующим образом операциями сложения и умножения:

Мнимая единица в такой системе представляется парой  . Поэтому ошибочно определение числа i как единственного числа, удовлетворяющего уравнению i2 = − 1, так как число ( − i) также удовлетворяет этому уравнению.

Матричная форма

Комплексные числа можно также идентифицировать с семейством вещественных матриц вида

с обычным матричным сложением и умножением.

Алгебраическая форма записи комплексного числа

Запись комплексного числа z в виде x + iy , называется алгебраической формой комплексного числа.

Сумма и произведение комплексных чисел могут быть вычислены непосредственным суммированием и перемножением таких выражений, как обычно раскрывая скобки и приводя подобные, чтобы представить результат тоже в стандартной форме (при этом надо учесть, что i2 = − 1):

(a + ib) + (c + id) = (a + c) + i(b + d);

Модуль, сопряженные комплексные числа.

Длина вектора, изображающего комплексное число, называется модулем этого комплексного числа. Модуль всякого комплексного числа, не равного нулю, есть положительное число. Модуль комплексного числа a + bi обозначается |a + bi|, а также буквой r.

   (1)

Модуль действительного числа совпадает с его абсолютным значением. Сопряженные комплексные числа а + bi и a - bi имеют один и тот же модуль.