Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Circuitry Full.doc
Скачиваний:
36
Добавлен:
22.04.2019
Размер:
4.12 Mб
Скачать

Сигма-дельта ацп

Своим названием эти преобразователи обязаны наличием в них двух блоков: сумматора (обозначение операции - ) и интегратора (обозначение операции -  ). Один из принципов, заложенных в такого рода преобразователях, позволяющий уменьшить погрешность, вносимую шумами, а следовательно увеличить разрешающую способность - это усреднение результатов измерения на большом интервале времени.

Основные узлы АЦП - это сигма-дельта модулятор и цифровой фильтр.Работа этой схемы основана на вычитании из входного сигнала Uвх(t) величины сигнала на выходе ЦАП, полученной на предыдущем такте работы схемы. Полученная разность интегрируется, а затем преобразуется в код параллельным АЦП невысокой разрядности. Последовательность кодов поступает на цифровой фильтр нижних частот.

    Порядок модулятора определяется численностью интеграторов и сумматоров в его схеме. Сигма-дельта модуляторы N-го порядка содержат N сумматоров и N интеграторов и обеспечивают большее соотношение сигнал/шум при той же частоте отсчетов, чем модуляторы первого порядка. Примерами сигма-дельта модуляторов высокого порядка являются одноканальный AD7720 седьмого порядка и двухканальный ADMOD79 пятого порядка.

 Сравнение сигма-дельта АЦП с АЦП многотактного интегрирования показывает значительные преимущества первых(линейность характеристики преобразования сигма-дельта АЦП выше, чем у АЦП многотактного интегрирования равной стоимости., емкость конденсатора интегратора у сигма-дельта АЦП значительно меньше (десятки пикофарад), так что этот конденсатор может быть изготовлен прямо на кристалле ИМС.

Вопрос 47. Структурные схемы источников вторичного электропитания. Особенности и области применения.

Их основными достоинствами являются: высокий коэффициент олезного действия, малые габариты и масса, высокая удельная мощность. Это стало возможным благодаря применению ключевого режима работы силовых элементов. В ключевом режиме рабочая точка большую часть времени находится в области насыщения, а зону активного (линейного) режима проходит с высокой скоростью за очень малое время переключения. В состоянии насыщения напряжение на транзисторе близко к нулю, а в режиме отсечки отсутствует ток, благодаря чему потери в транзисторе оказываются достаточно малыми. Поэтому средняя за период коммутации мощность, рассеиваемая в ключевом транзисторе, оказывается намного меньше, чем в линейных регуляторах. Малые потери в силовых ключах приводят к уменьшению или полному исключению радиаторов. Улучшение массогабаритных характеристик источников питания обусловлено тем, что из схемы источника питания исключается силовой трансформатор, работающей на частоте 50 Гц. Вместо него в схему вводится высокочастотный трансформатор или дроссель. К недостаткам импульсных источников электропитания относятся: сложность схемы, наличие высокочастотных шумов и помех, увеличение пульсаций выходного напряжения, большое время выхода на рабочий режим.

Структура построения ивэп.

о бязательным является наличие силового каскада, осуществляющего преобразование постоянного напряжения в другое постоянное, условно будем считать, что импульсные преобразователи реализуют функцию электрической изоляции (гальванической развязки) входных и выходных цепей, а импульсные стабилизаторы нет.

Структурная схема импульсного компенсационного ИВЭП

Импульсы, синхронизирующие работу ИВЭП, вырабатываются модулятором 1. Выходное напряжение постоянного тока Uн подается на вход схемы сравнения 4, где сравнивается с опорным напряжением Uоп. Сигнал рассогласования (ошибки) поступает на вход модулятора, который задает временные параметры синхронизирующих импульсов. Увеличение или уменьшение напряжения Uн приводит к изменению сигнала рассогласования на выходе 4 и временных параметров синхронизирующих импульсов на входе 1, что вызывает восстановление прежнего значения напряжения Uн, т.е. его стабилизацию. Таким образом, ИВЭП, является стабилизирующим импульсным преобразователем напряжения компенсационного типа, поддерживающим неизменность выходного напряжения при изменениях выходного тока Iн, входного напряжения Еп, температуры окружающей среды и воздействия других дестабилизирующих факторов.

Структурная схема импульсного параметрического ИВЭП

Сущность такого способа стабилизации заключается в том, что при воздействии какого-либо фактора, который может вызвать отклонение значения напряжения Uн от заданного, происходит изменение временных параметров управляющих импульсов, приводящее к тому, что Uн останется неизменным. Однако, в отличие от компенсационных стабилизаторов, изменение временных характеристик управляющих импульсов в этом случае зависит от величины отклонения самого дестабилизирующего воздействия.Генератор, обеспечивающий подобную функциональную зависимость, обозначен 1. Здесь штриховой линией показана связь Еп с управляющим входом генератора для обеспечения закона инвариантности Uн от Еп .

С труктурная схема нестабилизированного ИВЭП

Источники вторичного электропитания без стабилизации выходного напряжения выполняются по схеме, приведенной на рисунок 3. Генератор импульсов 1 вырабатывает импульсы с неизменными временными параметрами. Очевидно, что для неизменности напряжения Uн необходимо иметь стабильное напряжение Еп.

С труктурная схема ИВЭП двойного преобразования

осуществляет двойное преобразование энергии постоянного тока. Первый силовой каскад 1, как правило, импульсный стабилизатор преобразует напряжение Еп в стабилизированное напряжение Еп1. Второй силовой каскад 2 осуществляет гальваническую развязку напряжения и при необходимости дополнительную стабилизацию Uн. В общем случае компенсация и инвариантная стабилизация может осуществляется не только в 1, но и в обоих каскадах, что показано штриховыми линиями цепей отрицательной обратной связи. Силовые каскады 1 и 2 могут представлять собой различные варианты силовых каскадов любого из ИВЭП.

Структурная схема модульного ИВЭП

Д ля увеличения выходной мощности применено параллельное включение каскадов 3…5. Так как параллельное включение традиционных ИВЭП без применения специальных мер выравнивания мощности каждого из них невозможно, то в данном случае использован принцип многофазного построения ИЭВП. Он заключается в том, что модулятор-формирователь МФ осуществляет не только преобразование сигнала рассогласования СС в соответствующую импульсную последовательность, но и выполняет функцию фазового распределения импульсных сигналов по нескольким силовым каскадам. В результате такой работы ИЭВП временные этапы открытого и закрытого состояния силовых ключей транзисторов различных силовых каскадов оказываются разнесенными во времени.      

С труктурная схема импульсного ИВЭП с регулируемым инвертором

В схеме управления сравнивается выходное напряжение Uн и напряжение опорного источника 6. Разность этих напряжений, называется сигналом ошибки, используется для регулировки частоты регулируемого инвертора (f = var) или скважности импульсов при их неизменной частоте (g = var) . Конвертор, выполненный на базе однотактного трансформаторного инвертора, называют трансформаторным однотактным конвертором - ТОК. Конвертор, выполненный на базе двухтактного трансформаторного инвертора, называют трансформаторным двухтактным конвертором - ТДК.

Структурная схемы импульсного ИВЭП с регулируемым сетевым выпрямителем

схема ИВЭП с регулируемым сетевым выпрямителем 1 и нерегулируемым инвертором 2. Остальные узлы этой схемы имеют то же назначение, что и предыдущих схемах. Отличительной особенностью этой структурной схемы является использование нерегулируемого инвертора (НИ). Стабилизация выходного напряжения в этой схеме обеспечивается за счет регулирования напряжения на входе конвертора с помощью 1, который обычно выполняется на тиристорах с фазовым управлением.

Структурная схема многоканального ИВЭП с индивидуальной стабилизацией

и спользуется нерегулируемый инвертор 2 и индивидуальные стабилизаторы 5…7 , в отдельных каналах. Такая структурная схема может использоваться при небольшом количестве выходных каналов. При увеличении числа выходных каналов схема становится неэкономичной. Структурная схема ИВЭП с групповой стабилизацией

С хема работает на принципе групповой стабилизации выходного напряжения. В ней применяется регулируемый инвертор, который управляется напряжением наиболее мощного из каналов. Стабилизация выходных напряжений в других каналах ухудшается, так они не охвачены отрицательной обратной связью. Для улучшения стабилизации напряжения в других каналах, можно использовать дополнительные индивидуальные стабилизаторы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]