Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы Подземной гидром 130910.doc
Скачиваний:
139
Добавлен:
25.04.2019
Размер:
6.21 Mб
Скачать

3Установившееся движение сжимаемой жидкости и газа

Дифференциальные уравнения установившегося движения упругой жидкости по закону Дарси. Аналогия с движением несжимаемой жидкости. Функция Лейбензона. Плоскопараллельный и плоскорадиальный потоки. Исследование газовых скважин на стационарных режимах. Индикаторные линии. Приток газа при нарушении закона Дарси. Определение фильтрационных коэффициентов “a” и “b”.

3.1Дифференциальные уравнения установившегося движения упругой жидкости

Дифференциальное уравнение неразрывности потока выведено в параграфе 1.4. Если происходит установившееся фильтрация, то в этом уравнении производная по времени будет равна нулю. При фильтрации сжимаемой жидкости или газа плотность зависит от давления и поэтому ее нельзя вынести из под знака дифференциала:

.

(3.0)

Введем понятие массовой скорости, которая является произведением линейной скорости на плотность:

.

(3.0)

После такой замены дифференциальное уравнение неразрывности при установившемся движении примет такой же вид, что и для несжимаемой жидкости, только вместо линейной скорости будет стоять массовая скорость.

Используя закон Дарси, найдем массовую скорость:

.

(3.0)

Плотность сжимаемой жидкости или газа зависит от давления, поэтому введем вспомогательную функцию P, которую назовем функцией Лейбензона и определим ее как:

.

(3.0)

Подставим массовую скорость, найденную из закона Дарси в уравнение неразрывности получим уравнение фильтрации сжимаемой жидкости или газа при установившемся движении. Оно также является уравнением Лапласа, только вместо давления в него входит функция Лейбензона.

.

(3.0)

Аналогия с движением несжимаемой жидкости

С введением функции Лейбензона сравним уравнения, полученные в предыдущем параграфе, с уравнениями фильтрации несжимаемой жидкости.

Несжимаемая жидкость

Сжимаемая жидкость или газ

 = const(p)

 = (p)  const(p)

Уравнение неразрывности потока

um =  u

Q = u  = const(p)

Qm = um  = ат Qат = const(p)

Закон Дарси

Аналогия между величинами

Линейная скорость - u

um – Массовая скорость

Объемный расход - Q

Qm = ат Qат – массовый расход

Давление - p

P- функция Лейбензона

Сравнение уравнений позволяет установить аналогию между установившейся фильтрацией сжимаемой жидкости или газа и установившейся фильтрацией несжимаемой жидкости, для которой законы фильтрации были детально разобраны в главе 2. Отсюда следует вывод, что все формулы, полученные для установившейся фильтрации несжимаемой жидкости по закону Дарси, можно использовать и для установившейся фильтрации сжимаемого флюида в пластах той же геометрии и при тех же граничных условиях. Для этого необходимо в формулах несжимаемой жидкости заменить:

линейную скорость – u um – массовую скорость;

объемный расход – Q Qm – массовый расход;

давление – p P- функцию Лейбензона.

Подчеркнем, что при фильтрации газа плотность зависит от абсолютного давления, то давление p в этом случае - абсолютное давление.

Рассмотрим вид функции Лейбензона для некоторых частных случаев.

Несжимаемая жидкость. Для несжимаемой жидкости плотность не зависит от давления ( = o = const(p)), поэтому ее можно вынести из под знака интеграла и функция Лейбензона примет вид:

.

(3.0)

Идеальный газ. Для идеального газа плотность зависит от давления

,

(3.0)

поэтому функция Лейбензона после интегрирования примет вид:

.

(3.0)

Реальный газ. Для реального газа плотность зависит от давления

.

(3.0)

Коэффициент сверхсжимаемости реального газа z(p) достаточно сложным образом зависит от давления, поэтому интеграл вычислить затруднительно. В этом случае z(p) заменяют средним значением на промежутке изменения давления в пласте zср и функция Лейбензона после интегрирования примет вид:

.

(3.0)