Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ(21-30).docx
Скачиваний:
10
Добавлен:
29.04.2019
Размер:
393.14 Кб
Скачать

Технологический режим работы усшн можно регулировать двумя способами:

  1. изменение длины хода полированного штока (перемещение шатуна на кривошипе по отверстиям);

  2. изменение числа качаний головки балансира, т.е. увеличение или уменьшение частоты вращения ведомого вала редуктора (смена шкивов).

Qт= 1440•Fпл•Sпш•n – производительность УСШН.

(Sпл=Sпш)

Составляющие коэффициента подачи усшн

η =Qф/Qт η = η1 η2 η3 η4

η1 – коэффициент наполнения; η1= Vж/Vсм = Vж/(Vж+Vг) = 1/(1+Vг/Vж) = 1/(1+R);

η2 – коэффициент, учитывающий изменение хода плунжера; η2 = Sn/S = (S- λ)/S;

η3 – коэффициент утечек (неизбежны при работе насоса); η4 – коэффициент усадки.

Режим откачки – режимы работы насосного оборудования, определяемый сочетанием диаметра насоса, длины хода плунжера и числом качаний, т.е. параметрами, которые можно изменять.

Классификация режимов откачки:

1. Нормальные режимы, хар-ые наибольшей длиной хода (для данного станка-качалки) и наименьшим диаметром насоса (дл хода 1,8-3 м число качаний 2-4 к/мин)

2. Режим длинноходный: наибольшая длина хода и диаметр насоса больше, а число качаний меньше, чем при нормальном режиме. (3,5 мдл хода и 6-8 к/мин)

3. режим короткоходный (длина хода 0,9-1,2 м число качаний 6-10 к/мин)

4. Быстроходные режимы: частота качаний больше, а длина хода меньше, чем при нормальном режиме (дл хода 1,2-2 м, число качаний 10,15 к/мин)

5. Тихоходный режим (дл хода 1,8-3 м, число качаний 2-4 к/мин)

1) Влияние

2) Влияние потери хода плунжера.

3) Влияние утечек.

4) Влияние усадки жидкости.

Регулирование работы скважины, оборудованной ШСНУ сводится к изменению числа двойных ходов плунжера (чрезмерное увеличение n приводит к тому, что клапаны не будут успевать нормально реагировать на изменение давления в цилиндре) и длины хода плунжера.

  1. Основные факторы, вызывающие пульсацию и влияющие на их величину и частоту.

При одновременном транспорте нефти, газа и воды в однотрубной системе сбора наблюдается значительные пульсации в сборных коллекторах.

Пульсация возникает при движении газожидкостной смеси по рельефным трубопроводам, при этом газовая фаза образующаяся в верхней части трубопроводаи когда они срываются потоком жидкости, то на вхлдных сепараторах происходит резкий скачок давления (перепад Р может достигать 2 МПа).

Т.о.пульсация-переодические скачки давления.

Основными факторами, вызывающими пульсацию являются:

    1. Количество и равномерность подачи в трубопровод жидкости и газа.

    2. Диаметр трубопровода.

    3. Рельефы местности.

При малых скоростях потока 0,1-0,3 м/сек и гористой местности возникают пульсации с большой амплитудой и малой частоты.

Пульсации могут приводить:

1) к авариям трубопроводов.

2) уносу в трубопроводы жидкости из сепаратора.

3)нарушению технологических режимов УППВ.

Для ограничения влияния пульсации на работу технологических установок перед первой ступенью сепарации на ДНС или УПН устанавливаются гасители пульсации различной конструкции.(депульсаторы)

3.Особенности геологического строения разработки нефтегазовых залежей.

Особенностью является то, что при данных начальных пластовых термобарических состояниях, система находится в перенасыщенном состоянии(т.есущечствует жидкая и газовая фаза).

Разница в начальных пластовых давлениях в разных точках пласта месторождения различается на 5-12%. В фонтанном фонде скважин осложнение- прорыв газа в систему сбора (приводит к увеличению давления в системе сбора с 15 атм до 40-60 атм) сопровождающиеся большими вибрациями, в механизированном фонде скважин – срыв подачи.

В контактных зонах на границах ГНК, благодаря отсечению газовой шапки от нефтяной перемычки 1,5-2 метра создавались условия реализации практически тех же режимов, что и в нефтяных залежах, только с осложнениями вязкостной характеристики и дебитов. Отсюда нефтегазовые залежи сложного строения требуют выделения так называемых частных технологий даже в пределах одних и тех же объектов. Пример – Лянтор, в пределах этого месторождения выделено 4 обьекта.

Осложнения – опережение выработки газа из газовой шапки. Применяют барьерное заводнение(газ.шапка отсекается барьерным рядом)

по условиям насыщения зоны (части) в НГЗ В НГЗ могут быть выделены:

  1. ПГЗ - подгазовая зона в пределах внешнего контура газоносности;

  2. ЧНЗ - чисто нефтяная зона между внешним контуром газоносности и внутренним контуром нефтеносности;

  3. ВНЗ - водонефтяная зона между внутренним и внешним контурами нефтеносности.

Особенности разработки обусловлены:

1.фазовым состоянием системы при начальных пластовых условиях (система перенасыщена газом)

2.геологические литофациальные особенности НГЗ ( послойная и зональная неоднородность, тектоническая нарушенность,,глинизация

Перечисленные факторы определяют ряд особенностей разработки НГЗ :

  1. т.к. ΔР = Рплнач - Рнас = 5 -10 ат, скважины работают при Pзабнас;

  2. вокруг каждой добывающей скважины развиваются зоны разгазирования (происходит движение газонефтяной системы со снижением фазовой проницаемости по нефти);

  3. отмечаются повышенные газовые факторы нефти;( для НГЗ 150-300м3/т, а в НЗ 30-90 м3/т)

  4. происходит вытеснение газированной нефти водой;

  5. в подгазовой зоне (ПГЗ) вскрытие пласта перфорацией предусматривает отступление от ГНК на 4-5 метров для предупреждения прорыва верхнего газа и от ВНЗ на 1.5-2 метра.

  6. при прорыве воды (законтурной, подошвенной или закачиваемой) происходит трехфазная фильтрация со всеми отрицательными последствиями;

  7. конечнаянефтеотдача в НГЗ при прочих равных условиях на 10-15 % ниже, чем в чисто нефтяных залежах;

  8. глубинно-насосное оборудование работает в более неблагоприятных условиях по сравнению с нефтяными залежами.

  9. Интервалы перфорации требуют тщательного анализа характера послойной неоднородности пласта.

10)Местоположение ГНК и ВНК может обеспечить многообразие типов НГЗ (до 12 по Самарцеву)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 26

  1. Назначение и технологии проведения кислотных обработок добывающих скважин.

СКО - один из методов увеличения продуктивности доб.скважин, увеличения приемистости нагн.скважин.

Область применения СКО – обработка ПЗП, содержащих в породе карбонатов кальция, магния и других минералов, активно реагирующих с

кислотой.

Для обработки карбонатных коллекторов наибольшее распространение получила соляная кислота, а для обработки терригенных коллекторов - смесь соляной и плавиковой кислот (глиняная кислота).

Виды СКО

Область применения

кислотные ванны

при освоении для очистки поверхности забоя от глинистой корки

СКО под давлением

проникающие обработки ПЗП для образования глубокопроникающих каналов

глинокислотная обработка

для растворения глинистых пропластков, запрещается для проведения в карбонатных породах

пенокислотная обработка

для замедления реакций в 4-5 раз, тем самым увеличивая глубину проникновения

Термокислотная обработка(до 80-900С)

для плотных кабонатных пород с целью ускорения реакции

обработка нефтекислотными эмульсиями

для увеличения глубины проникновения в ПЗП

Кислотные ванны применяются во всех скважинах с от­крытым забоем после бурения и при освоении, для очистки по­верхности забоя от остатков цементной и глинистой корки, продуктов коррозии, кальцитовых выделений из пластовых вод и др. Для скважин, забой которых обсажен колонной и перфо­рирован, кислотные ванны проводить не рекомендуют. Объем кислотного раствора должен быть равен объему скважины от забоя до кровли обрабатываемого интервала, а башмак НКТ, через который закачивают раствор, спускается до подошвы пласта или забоя скважины. Применяется раствор НС1 повы­шенной концентрации (15—20%), так как его перемешивания на забое не происходит.

Время выдержки для нейтрализации кислоты для данного месторождения устанавливается опытным путем по замерам концентрации кислоты в отработанном и вытесненном на по­верхность через НКТ растворе.

Обычно время выдержки составляет 16—24 ч.

Простые кислотные обработки наиболее распространен­ные, осуществляются задавкои раствора HCL в ПЗС.

При многократных обработках для каждой последующей операции растворяющая способность раствора должна увели­чиваться за счет наращивания объема закачиваемого раствора, повышения концентрации кислоты, а также и за счет увеличе­ния скорости закачки. Исходная концентрация раствора — 12 %, максимальная — 20 %.

Простые кислотные обработки, как правило, осуществляются с помощью одного насосного агрегата в тщательно промытой и подготовленной скважине без применения повышенных темпе­ратур и давления. При парафинистых и смолистых отложениях в НКТ и на забое их удаляют промывкой скважины соот­ветствующими растворителями: керосином, пропан-бутановыми фракциями и другими нетоварными продуктами предприятий нефтехимии. При открытом забое кислотная обработка прово­дится только после кислотной ванны. После закачки расчетного объема раствора кислоты в НКТ закачивают продавочную жидкость в объеме, равном объему НКТ.

В качестве продавочной жидкости обычно используется нефть для добывающих скважин и вода с добавкой ПАВ типа ОП-10 для нагнетательных скважин. В процессе закачки рас­твора ПО уровень кислоты в межтрубном пространстве под­держивается у кровли пласта.

Кислотная обработка под давлением. При простых соляно-кислотных обработках (СКО) кислота проникает в хорошо про­ницаемые прослои, улучшая их и без того хорошую проницае­мость. Плохо проницаемые прослои остаются неохваченными. Для устранения этого недостатка, связанного со слоистой не­однородностью пласта, применяют кислотные обработки под повышенным давлением. При этом четко выраженные высоко­проницаемые прослои- изолируются пакерами или предвари­тельной закачкой в эти прослои буфера -- высоковязкой эмуль­син типа кислота в нефти. Таким способом при последующей закачке кислотного раствора "можно значительно увеличить ох­ват пласта по толщине воздействием кислоты.

СКО под давлением обычно является третьей операцией после ванн и простых СКО. Область применения СКО – обработка ПЗП, содержащих в породе карбонатов кальция, магния и других минералов, активно реагирующих с кислотой.

Ступенчатая (или поинтервальная) обработкасквиспольз-ся для скввскрывших залежь большой толщины или экс-рующих 2 и более продуктивных пласта. Суть данного приема: продуктивный пласт по толщине разбивается на интервалы по 10-20м и обрабатывается поочередно, начиная с нижнего участка. Для повышения эффективности обработки заданный интервал пласта изолируют пакером. Здесь используют различные хим.изолирующие материалы, например ВУС на основе ПАА, перекрывают нижний интервал песком или закачивают в скв капроновые шарики. Поинтервальную обработку рекомендуется проводить также в нагнетательныхскв, что приводит к увеличению общей премистостискв и выравниванию профиля приемистости по всей толщине заводняемого пласта.

Многократные кислотные обработки заключаются в многократном кислотном воздействии на один и тот же продуктивный пласт или его отдельный интервал. Они применяются, когда единичного кислотного воздействия недостаточно для достижения намеченной цели.

  1. Схема предварительного разгазирования нефти. Понятие сепарации и ступеней сепарации.

I –нефтегазовая смесь

II –разгазированная нефть

III –газ с конденсатом

IV –«сухой» газ

1 – Нефтегазовый сепаратор

2 – газовый сепаратор

Разгазирование нефти при определенных Р и Т, называется сепарацией нефти. Сепарация начинается, как только Р в потоке снижается до Рнас нефти газом это может произойти и в стволе, и в пласте, и в трубопроводе.

Выделение газа из нефти будет увеличиваться с уменьшением Р. Объем выделившегося газа по мере снижения Р увеличивается и превышает объем жидкости в несколько десятков раз.

Сепарацию нефти осуществляют, как правило, в несколько ступеней.На промыслах З.С. принята 4х ступ.сепарация.Первые 2 стадии осущ-ся на ДНС,3 и 4 на УПН.

Ступенью сепарации, называют отделение нефти от газа при определенных Р и Т. Нефтегазовую смесь сепарируют сначала при высоких Р на 1-ой ступени сепарации, где выделяется основная масса газа, затем нефть поступает на сепарацию при среднем и низком Р-х, где она окончательно разгазируется.

В технологических режимах, когда перед разгазированием нефть подогревают, такая сепарация называется горячей.

От проведения процессов сепарации зависят потери легких фракций нефти при последующем транспорте и хранении. При однократном, т.е с резким снижением Р, с потоком газа уносится тяжелые углеводороды (С6 и выше).

При ступенчатой сепарации подбором Р на ступенях можно достигнуть выделение только свободного газа, что приводит к минимальным потерям бензиновых фракций нефти, число ступеней сепарации зависит от физико-химической характеристики пластовой нефти, требований предъявляемых к товарной нефти, и в каждом конкретном случае определяется расчетом исходя из условия достижения наилучших технико-экономических показателей.

  1. Классификация месторождений по величине извлекаемых запасов.

Принятый документ классифицирует также месторождения. Так, по величине извлекаемых запасов месторождения углеводородов подразделяются на:

— уникальные (более 300 млн тонн нефти, 500 млрд м3 газа); — крупные (от 30 млн до 300 млн тонн нефти, от 30 млрд до 500 млрд м3 газа); — средние (от 3 млн до 30 млн тонн нефти, от 3 млрд до 30 млрд м3 газа); — мелкие (от 1 млн до 3 млн тонн нефти, от 1 млрд до 3 млрд м3 газа); — очень мелкие (менее 1 млн тонн нефти, менее 1 млрд м3 газа).

Более детально по сравнению с временной классификацией проведено подразделение мелких месторождений. Если в классификации 1983 года мелкими считались месторождения с запасами менее 10 млн тонн нефти, менее 10 млрд м3 газа (в документе от 2001 года эту границу подняли еще выше), то теперь группа мелких и очень мелких месторождений более соответствует мировой практике.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 27

  1. Назначение и технология проведения ГДИ.

Гидродинамические исследования скважин (ГДИС) — совокупность различных мероприятий, направленных на измерение определенных параметров (давление, температура, уровень жидкости, дебит и др.) и отбор проб пластовых флюидов (нефти, воды, газа и газоконденсата) в работающих или остановленных скважинах и их регистрацию во времени.

Методы ГДИС предназначены для изучения продуктивных пластов при их испытании, освоении и эксплуатации в добывающих и нагнетательных скважинах с целью получения данных об их продуктивности и приемистости, фильтрационных параметрах и скин‑факторе, трассировки границ пласта и особенностях зон дренирования, типа пласта коллектора, анизотропии пласта по проницаемости, режима залежи и др.

Методы ГДИС позволяют непосредственно определить гидропроводность и пьезопроводность пласта, продуктивность скважины, оценить качество вскрытия пласта и технологическую эффективность внедрения методов увеличения дебитов скважин. Кроме того, методами ГДИС можно определить тип коллектора, наличие границ неоднородности гидродинамической связи между скважинами и между пластами и т.д.

По технологии исследования различают:

  • методы ГДИС на установившихся режимах фильтрации;

  • методы ГДИС на неустановившихся режимах фильтрации;

К методам неустановившихся режимов фильтрации можно отнести и метод гидропрослушивания.

При этих исследованиях решается обратная задача теории фильтрации, т.е. при известных дебитах и забойных давлениях определяются параметры пласта.

Метод исследования на установившихся режимах фильтрации предназначен для определения коэффициента продуктивности скважины и характера фильтрации жидкости в пласте.

К методам исследования скважин на неустановившихся режимах фильтрации относятся:

  • снятие КВД и КПД в эксплуатационных и нагнетательных скважинах;

  • снятие КВУ в эксплуатационных скважинах механизированного фонда, снятие кривой стабилизации давления (КСД) «метод суммарной добычи»;

  • экспресс-методы, прослеживание изменения забойного давления (КПЗД).

В отечественных руководствах по ГДИС излагаются в основном методы обработки только на базе представления о плоскорадиальной фильтрации к вертикальным и наклонным скважинам. Это так называемые традиционные методы.

Массовое внедрение на промыслах гидравлического разрыва пласта и переход на бурение горизонтальных скважин и скважин с боковым стволом выдвинуло проблему дальнейшего развития и совершенствования комплекса ГДИС со сложными траекториями фильтрации.

Развитие теории и практики ГДИС в нашей стране и за рубежом шло параллельными путями. Несмотря на различие в способах анализа материалов исследований, базовые, теоретические представления, а также принципы интерпретации результатов исследований скважин у отечественных исследователей и их зарубежных коллег близки.

Современные методы ГДИС являются дальнейшим развитием и существенным дополнением широко известных традиционных ГДИС.

Методы ГДИС являются косвенными методами определения параметров пласта. Их теоретической и методологической основой служат решения прямых и обратных задач подземной гидромеханики, которые не всегда имеют однозначные решения. Поэтому интерпретация ГДИС носит комплексных характер с использованием результатов ГИС, лабораторных и геолого-промысловых исследований.

Выделяют 2 вида гидродинамических исследований: при неустановившемся и установившемся режимах фильтрации. Исследования скважин при неустан режиме дают больше информ, чем исследования методом установ отборов. При обработке КВД получают среднее значение гидропроводности или проницаемости на различных расстояниях от скважины, опрделяют коэффициент пьезопроводности и приведенный радиус скважины, оценивают коэф дополнительных потерь давления (показатель скин-эффекта), определяют пластовое давление и приближенный коэффициент продуктивности скв.

При обработке данных исследования методом установившихся отборов определяют коэф продуктивности и пластовое давление. Оценивают приближенноГидропроводность и проницаемость в призабойной зоне. При исследовании скважин, оборудованных УЭЦН, широко используются методы, применяемые при эксплуатации скважин штанговыми скважинными насосными установками. Это применение скважинных манометров для замера забойного давления или давления на приеме насоса, а также определение уровня жидкости в скважине с помощью эхолота или волномера. Помимо этого используют методы присущи лишь данному способу эксплуатации скв.

Невсегда в скважинах с УЭЦН моно спустить манометр, поэтому часто используют звукометрический метод, позволяющий с помощью волномера замерить динамический уровень (скорость отражения звука*время отражения). Затем рассчитывают Рзаб= ρН/10.

Наиболее точен метод непосредственного измерения давления на приеме насоса с помощью скважинного манометра, спускаемого в НКТ и устанавливаемого в специальное запорное устройство, называемое суфлером. Давление на приеме насоса можно определить расчетным путем по давлению на выкиде насоса, измеряемому манометром, спущенном в НКТ, и напору, развиваемому насосом при закрытой манифольдной задвижке, после чего насос некоторое время подает жидкость, сжимая ГЖС в НКТ. Затем подача насоса становится равной нулю, о чем можно судить по стабилизации давления на устье. При нулевом режиме работы насоса давление на выкиде складывается из давления, создаваемого насосом, и гидростатического давления столба жидкости в затрубном пространстве над насосом - давления на приеме. Наиболее простой и наименее точный метод: определение коэф продуктивности по показаниям давления на устье. Обычно целью подобных исследований является качественное выявление причины уменьшения дебита скв: ухудшение свойств призабойной зоны или износ насоса

2.Назначение сепараторов

П роцесс сепарации начинается уже сразу на первых этапах движения нефти, когда из нефти отбираются выделившиеся газообразные углеводороды (с падением давления), находящиеся в пластовых условиях в жидком состоянии.

Жидкая фаза может, в свою очередь, состоять из нефти и пластовой воды, содержание которой колеблется от нуля до значительных величин. Следовательно, в случае содержания воды в продукции скважин мы имеем дело с трехфазным или нефтеводогазовым потоком, который состоит из нефти, газа и воды.

П ервым узлом отбора легких фракций оказываются трапно-сепарационные установки, на которых от нефти отделяется свободный газ, подаваемый далее по газосборным коллекторам на промысловую компрессорную станцию либо на газобензиновый завод.

Нефтегазовые сепараторы служат для отделения газа от жидкой продукции скважин.

Отделение нефти от газа и воды в различных сепараторах производиться с целью: для получения нефтяного газа, выделившегося из нефти при ее движении по стволу скважины, выкидной линии и сборному коллектору;

  1. для уменьшения перемешивания нефтегазового потока и снижения в связи с этим гидравлических сопротивлений в трубопроводах;

  2. для разложения и отделения от нефти образовавшейся пены;

  3. для предварительного отделения воды от нефти при добыче нестойких или разрушенных в трубопроводе нефтяных эмульсий;

  4. для существенного снижения пульсаций при транспортировании нефти от сепараторов первой ступени до УПН.

Последний фактор оказывает существенное влияние на стабильность работы УПН и УПВ. Если значительно не снизить или не исключить пульсацию давления в первой ступени сепарации, то она будет передаваться оборудованию УПН и УПВ и последнее будет работать с перегрузкой или недогрузкой, т.е. нестабильно, а это значит, что подготовка нефти и воды на этих установках

3.Технологии разработки многопластовых месторождений.

П риобщение пластов.

Различают следующие виды приобщения пластов:

1) Совместная эксплуатация продуктивных пластов.

Если пласты имеют ~ одинаковые Рпласт ~ одинаковые фильтрационные характеристики и ~ одинаковые свойства нефти. Эксплуатация ведется одним подъемником, при этом флюиды разрабатываемых пластов смешиваются. При нарушении названных условий наблюдается неравномерность выработки запасов различных пластов.

2) Совместно-раздельная эксплуатация продуктивных пластов.

Используется в случае, когда пластовые давления или проницаемость различаются значительно, что окажет существенное негативное влияние на выработку запасов. Установки для ОРЭ бывают 4 типов: фонтан-фонтан, фонтан-насос, насос-фонтан, насос-насос (первое слово обозначает способ эксплуатации нижнего пласта, второе – верхнего). Разобщение пластов осуществляется с помощью специального пакера, который может быть как с перепускным клапано (для удаления накопившегося под пакером газа в затрубном пространстве) так и без него. Использование установок ОРЭ как правило затрудняет исследование скважин и управление режимом работы скважины, что в свою очередь осложняет контроль за разработкой месторождения. При ОРЭ затруднена очистка скважины от АСПО. Флюиды разных пластов смешиваются, что осложняет учет жидкости поступившей из каждого пласта в отдельности (как правило, для этого используется фотоколометрический анализ).

3) Раздельная эксплуатация продуктивных пластов.

Когда существенно отличается и Рпласт и ФЕС и качество нефти (напр. сернистая и слабо сенрнистая). При раздельной эксплуатации подъем нефти на поверхность осуществляется по двум различным подъемникам, в результате флюиды различных пластов не смешиваются. Возможны различные сочетания фонтан-фонтан, насос-насос и т.д. Использование данного способа ограничивается размерами обсадной колонны (>= 168 мм). Данный метод может использоваться для раздельной закачки воды при необходимости дифференцирования давления нагнетания для различных пластов. При этом существуют 2 принципиальные схемы: 1ая в один пласт жидкость нагнетается по НКТ в другой по затрубу (нежелателен в связи с негативным воздействием на обсадную колону); 2ая система с параллельной подвеской 2х колонн НКТ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]