Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОСЫ(21-30).docx
Скачиваний:
10
Добавлен:
29.04.2019
Размер:
393.14 Кб
Скачать

Билет №28

1) Технологии управления продуктивностью скважин.

Среди многочисленных методов управления продуктивностью скважин путем воздействия на ПЗП не все обладают одинаковой результативностью, но каждый из них может дать максимальный положительный эффект только при условии обоснованного подбора конкретной скв. Поэтому при использовании того или иного способа искусственного воздействия на ПЗП вопрос подбора скв.является принципиальным. При этом обработки,даже эффективные, проводимые в отдельных скв.,могут не дать существенного положительного эф-та в целом по залежи или месторождению как с позиции интенсификации выработки запасов, так и с позиций повышения коэффициента конечной нефтеотдачи.

Методы интенсификации притока и приемистости

Гидрогазодинамические

  1. ГРП

  2. Гидропескоструйная перфорация (ГПП)

  3. Создание многократных депрессий спец.устройствами для очистки скв.

  4. Волновое или вибрационное возд-е

  5. Имплозионное возд.

  6. Декомпрессионная обработка

  7. Щелевая разгрузка

  8. Кавитационно-волновое возд.

Физико-химические

  1. Кислотные обработки (соляной,серной,плавиковой кислотой)

  2. Возд. Растворителями(толуол,бензол,ацетонметиловый спирт)

  3. Обработка растворами ПАВ(сульфанол)

  4. Обработка ПЗС ингибиторами солеотложений

  5. Обр-ка ПЗС гидрофобизаторами

Термические

  1. Электропрогрев (стационарный,циклический)

  2. Паротепловые обработки скв.

  3. Прокачки горяч. Нефти

  4. Импульсно-дозированное тепловое возд.

Комбинированные

  1. Термокислот. Обр-ка

  2. Термогазохимич. Возд.

  3. Гидрокислот.разрыв пласта

  4. Направленное кислот возд.в сочетании с ГПП

  5. Повтор. Перфорация в спец.растворах кислоты,ПАВ

  6. Термоакустич возд.

  7. Электрогидравлич.возд.

  8. Внутрипластовое окисление легких углеводородов

Гидравлический разрыв пласта

Гидравлический разрыв пласта (ГРП) предназначен для повышения проницаемости обрабатываемой области ПЗС и заключается в создании искусственных и расширении естественных трещин. Наличие микротрещин в ПЗС связано с процессом первичного вскрытия в фазе бурения вследствие взаимодействия долота с напряженными горными породами, а также с процессом вторичного вскрытия (перфорации). Сущность ГРП заключается в нагнетании под давлением в ПЗС жидкости, которая заполняет микротрещины и ≪расклинивает≫ их, атакжеформируетновыетрещины. Еслиприэтомввестивобразовавшиесяилирасширившиесятрещинызакрепляющийматериал (например, песок), топослеснятиядавлениятрещинынесмыкаются.

Технология проведения ГРП заключается в совокупности следующих операций:

  • Подготовка скважины — исследование на приток или приемистость, что позволяет получить данные для оценки давлени разрыва, объема жидкости разрыва и других характеристик.

  • Промывка скважины — скважина промывается промывочной жидкостью с добавкой в нее определенных химических реагентов. Принеобходимости осуществляют декомпрессионную обработку, торпедирование или кислотное воздействие. При этом рекомендуется использовать насосно-компрессорные трубы диаметром 3-4" (трубы меньшего диаметра нежелательны, т.к. велики потери на трение).

  • Закачка жидкости разрыва. Жидкость разрыва — тот рабочий агент, закачкой которого создается необходимое для разрыва горной породы давление для образования новых и раскрытия существовавших в ПЗС трещин. В зависимости от свойств ПЗС и других параметров используют либо фильтрующиеся, либо слабофильтрующиеся жидкости.

  • Закачка жидкости-песконосителя. Песок или любой другой материал, закачиваемой в трещину, служит наполнителем трещины, являясь, по существу, каркасом внутри нее и предотвращает смыкание трещины после снятия (снижения) давления. Жидкость-песконоситель выполняет транспортную по отношению к наполнителю функцию.Основными требованиями к жидкости-песконосителю являются высокая пескоудерживающая способностьи низкая фильтруемость.

  • Закачка продавочной жидкости. Основной целью этой жидкости является продавка жидкости-песконосителя до забоя и задавка ее в трещины.

  • После закачки наполнителя в трещины скважина оставляется под давлением. Время выстойки скважины под давлением должно быть достаточным, чтобы система (ПЗС) перешла из неустойчивого в устойчивое состояние, при котором наполнитель будет прочно за- фиксирован в трещине. В противном случае в процессе вызова притока, освоения и эксплуатации скважины наполнитель выносится изтрещин в скважину

  • Вызов притока, освоение скважины и ее гидродинамическое исследование. Следует подчеркнуть, что проведение гидродинамического исследования является обязательным элементом технологии, т.к. его результаты служат критерием технологической эффективности процесса.

КИСЛОТНЫЕ ОБРАБОТКИ ПЗС

Известно много методов кислотноговоздействия, которые основаны на способности некоторых кислот

растворять горные породы или цементирующий материал. Применение таких кислот связано с:

1. Обработкой ПЗС в залежах с карбонатными коллекторами.

2. Обработкой ПЗС в залежах с терригенными коллекторами.

3. Растворением глинистых или цементных частиц, попавших в ПЗС в процессе бурения и цементирования скважины.

4. Растворением выпавших в призабойной зоне скважины солей.

Для обработки карбонатных коллекторов наибольшее распространение получила соляная кислота, а для обработки терригенных коллекторов - смесь соляной и плавиковой кислот (глиняная кислота).

Различают несколько видов солянокислотных обработок, среди которых:

— Обычная СКО.

— Кислотная ванна.

— СКО под давлением.

— Поинтервальная или ступенчатая СКО

ТЕРМОКИСЛОТНАЯ ОБРАБОТКА

Термокислотная обработка предназначена для повышения эффективности кислотных обработок карбонатных коллекторов, когда в процессе эксплуатации скважин в призабойной зоне отлагаются асфальто-смоло-парафиновые (АСП) вещества, блокирующие карбонатную породу для нормальной реакции ее с кислотным раствором. Эффективной кислотная обработка будет только в том случае, если

предварительно удалить с поверхности карбонатной породы асфальто-смоло-парафиновые отложения (АСПО). Удаление АСПО возможно в процессе промывки после их расплавления. РасплавлениеАСПО достигается за счет экзотермической реакции взаимодействиясоляно-кислотного раствора НС1 с магнием или его сплавами и др.

ГЛИНОКИСЛОТНАЯ ОБРАБОТКА

Глиняной кислотой называется смесь 3-5%-й фтористо-водородной (HF) и 8-10%-й соляной кислот. Терригенные коллекторы содержат, как правило, малое количество карбонатов, изменяющееся, в среднем, от 1 до 5% по массе. Основная масса таких коллекторов представлена силикатными веществами (кварц) и алюмосиликатами (каолин). Известно, что силикатные вещества практически не взаимодействуют с соляной кислотой, хотя хорошо растворяются в плавиковой (фтористо-водородной).Сущность глинокислотной обработки терригенных коллекторов и состоит в учете особенностей их строения. При контакте глиняной кислоты с терригенными породами небольшое количество карбонатного материала, реагируя с солянокислотной частью раствора, растворяется, а фтористо-водородная кислота, медленно реагирующая с кварцем и алюмосиликатами, достаточно глубоко проникает в ПЗС, повышая эффективность обработки.

ТЕРМОГАЗОХИМИЧЕСКОЕ ВОЗДЕЙСТВИЕ НА ПЗС

Основой термогазохимического воздействия (ТГХВ) послужили работы по разрыву пласта под давлением газов, образующихся при сгорании на забое скважины порохового заряда. При этом характеристики сгорающего пороха (температура, давление и объем газов горения) зависят от времени горения. В результате экспериментальных исследований было установлено, что сжигание медленногорящего пороха приводит к существенному повышению температуры на забое скважины, а большое количество газообразных продуктов горения и их химическая активность (особенно к карбонатам) оказывают благоприятное воздействие на ПЗС. При быстром сгорании порохового заряда давление на забое скважины может достигать 100 МПа, что влечет механическое воздействие на ПЗС и образование в ней новых трещин, а также расширение имеющихся. Такое воздействие, по сути, аналогично гидроразрыву, а точнее, первой его фазе, т.е. образованию трещин без их закрепления наполнителем.

При сгорании 1 кг медленногорящего пороха выделяется до 1м3 газов горения, состоящих в основном из углекислого газа и хлористого водорода. Диоксид углерода, растворяясь в нефти, снижает ее плотность и вязкость, увеличивает подвижность, а такжеснижает поверхностное натяжение на границе с водой и породой.Хлористый водород при наличии воды образует соляную кислоту, концентрация которой зависит от количества воды и газообразных продуктов горения и может достигать 5%. Соляная кислота, воздействуя на карбонатные коллекторы, увеличивает проницаемость ПЗС.

2 Классификация сепараторов.

Сепараторы можно подразделить на следующие категории:

  1. По назначению: а) Замерные; б) Сепарирующие;

  2. По геометрической форме: а) Цилиндрические; б) Сферические;

  3. По положению в пространстве: а) Вертикальные; б) Горизонтальные; в) Наклонные;

  4. По характеру основных действующих сил: а) Гравитационные; б) Инерционные; в) Центробежные; г) ультразвуковые;

  5. По технологическому назначению: а) Двухфазные; б) Трехфазные; в)Сепараторы первой ступени; г) Концевые сепараторы(при окончательной разгозир. Нефти перед сдачей в ТП); д) Сепараторы с предварительным отбором газа;

6.По рабочему давлению: а) Высокого больше 6 МПа; б) Среднего от 0,6 до 6 МПа; в) Низкого от 0,1 до 0,6 МПа; г) Вакуумные меньше 0,1мПА.

3 Методы определения типа залежи по составу углеводородов и их относительной плотности.

а) Газовые - нет тяжелых углеводородов (метан- 95-98%; относительная плотность 0.56; при понижении температуры выделения жидких углеводородов не происходит).

б) Газонефтяные - сухой газ + жидкий газ (пропан - бутановая смесь) + газовый бензин С5+( метан = 35-40%, этан = 20%, жидкий газ = 26-30%, газовый бензин = 5%, не углеводороды = 8-13%,  1.1).

в) Газоконденсатные - сухой газ + конденсат (бензиновая, керосиновая, лигроиновая и, иногда, масляная фракции) (метан = 75-90%, этан = 5-9%, жидкий газ = 2-5%, газовый бензин = 2-6%, не углеводороды = 1-6%,  0.7-0.9).

г) Газогидратные - газ в твердом состоянии.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 29

  1. Методы обоснования способов эксплуатации скважин.

МЕТОДОЛОГИЯ ПРЕДВАРИТЕЛЬНОГО ВЫБОРА

МЕХАНИЗИРОВАННОГО СПОСОБА ЭКСПЛУАТАЦИИ

При выборе способа эксплуатации скважин в качестве основных необходимо рассматривать технические, технологические, эксплуатационные, экономические и социальные показатели. Пред-

варительный выбор можно сделать на основе обобщенных параметров, используя, например, ранговый подход.Для одной группы частных параметров (х), оценивающих возможность успешного применения того или иного способа эксплуатации, можно использовать пятибалльную систему оценок.

Для другой группы частных параметров (у), характеризующихсложность системы, капитальные вложения, металлоемкость и т.д.,

достаточно использовать трехбалльную систему оценок.

Обобщенные Z-параметры для различных способов эксплуата-

ции скважин могут быть определены как средние геометрические

частных оценок для рассматриваемых параметров:

Предложенная методика рекомендуется только для предварительного выбора способа эксплуатации; окончательное решениедолжно приниматься после технико-экономических расчетов поконкретным способам эксплуатации.Данный метод удобен тем, что если хоть один из частных параметров равен нулю, то данный способ эксплуатации неприменим врассматриваемых условиях. Для него характерна также высокая чувствительность к низким оценкам частных параметров.

Все способы эксплуатации делятся на фонтанный (за счет естественной энергии залежи) и механизированный (за счет энергии подводимой извне). Так как возможности и техническая реализация известных методов эксплуатации скважин существенно различаются, выбор наилучшего для конкретных условий зависит от следующих критериев:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]