Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АИУС.doc
Скачиваний:
124
Добавлен:
07.05.2019
Размер:
15.2 Mб
Скачать

Пример работы программы

Программа расчета оптимального использования пара представлена на рис. 8.1.

В этой программе могут использоваться как новые данные турбоагрегатов, так и архивные данные.

При нажатии кнопки данные всплывает окно (рис. 8.2)

Рис. 8.2. Окно ввода даты и времени

В это окно вводим дату в формате «01.02.2005» и время, «01:00-02:00», если дата и время совпадают с уже введенными и сохраненными в базе данных, то в таблице «Расчет потребления свежего пара турбогенераторами, D0 т/ч» выводятся значения за этот промежуток времени. Если же такие данные не были введены, то нужно записать их вручную (рис. 8.3).

Рис. 8.3. Окно ввода данных

При этом данные записываются в ту же основную таблицу. Если необходимо исправить значение, это можно сделать в самой таблице и нажать кнопку «Пересчет». Расчетные значения исправит сама программа.

Далее нужно записать ограничения на параметры режимов турбогенераторов (рис. 8.4), либо оставить значения в этой таблице такими, какие они были.

Frame24

Рис. 8.4. Ограничения на параметры режимов турбогенераторов

Нажимаем кнопку «Оптимизация» (рис. 8.4).

Рис. 8.5. Окно ввода ограничений по выработке тепловой и электрической энергии

В окно на рис. 8.5. нужно внести необходимые значения электрической мощности, тепловой энергии отданной, на правый берег и на левый, а также значение перетока.

После нажатия «Оk» появляется окно, приведенное на рис. 9.6.

Рис. 8.6. Окно подтверждения нахождения решения

В таблице «Решение задачи оптимизации» (рис. 8.7) выдаются оптимальные параметры турбоагрегата. А в таблице «Расчет потребления пара» показываются исходное и оптимальное суммарные значения потребления свежего пара (рис. 8.7).

Frame25

Особенность приведенного алгоритма решения задачи оптимизации заключается в том, что на его основе можно решить задачу оптимизации нагрузки параллельно работающих турбоагрегатов при неполных исходных данных эксплуатации с учетом нормативных энергетических характеристик турбин.

Практическое применение разработанной программы оптимизации нагрузки параллельно работающих турбоагрегатов «ТГ-ПАР» показало на конкретном примере, что с ее помощью можно снизить потребление свежего пара до 11%.

9. Автоматизированная информационная система мониторинга остаточного ресурса энергетического оборудования30

В настоящее время на многих электрических станциях промышленных предприятий сложились условия, при которых по многим позициям оборудования сроки эксплуатации значительно превышают парковый ресурс. Для такого оборудования существующие подходы к оценке ресурса и планированию ремонтных работ являются неэффективными и требуют существенной доработки.

Так, согласно существующей отраслевой системе технической диагностики и планово-предупредительных ремонтов контроль металла энергоагрегатов осуществляется в периоды капитальных ремонтов, проводимых в соответствии с нормативами через 4-5 лет. Однако для энергооборудования, выработавшего свой парковый ресурс, существующий плановый подход является малоэффективным. В данном случае целесообразным является проведение ремонтов по фактическому состоянию оборудования, определяемому на основании контроля диагностических показателей эксплуатации и металлоконструкций.

Методы, объем и периодичность контроля при диагностике состояния металла выбираются таким образом, чтобы обеспечить высокую надежность эксплуатации всех узлов энергооборудования. Накопленный опыт оценки состояния элементов энергооборудования и порядок продления их ресурса после длительной эксплуатации показывает31, что при наработке, превышающей проектную более чем в 2 раза, должны быть выполнены специальные ресурсные исследования, измерения и расчеты. По результатам этих исследований устанавливается индивидуальный ресурс элемента энергооборудования, т.е. максимальное приближение к предельному состоянию оборудования при сохранении требований к его надежности.

Из сказанного следует, что центральными проблемами обеспечения надежности и живучести стареющего оборудования являются проблема прогнозирования индивидуального ресурса оборудования и проблема гибкого планирования ремонтных работ. Решение этих проблем открывает дополнительные пути для получения экономического эффекта, позволяет предупре­ждать возможные отказы и непредвиденные достижения предельных состояний, более правильно планировать режимы эксплуатации, профилактические мероприятия и снабжение запасными частями. Более того, переход к индивидуальному прогнозированию ведет к увеличению среднего ресурса оборудования, поскольку уменьшает долю агрегатов, преждевременно снимаемых для ремонта, и открывает путь для обоснованного выбора оптимального срока эксплуатации. В ряде случаев рентабельная эксплуатация может быть продолжена в усло­виях сниженных нагрузок. Поэтому можно рассматривать прогнозирование индивидуального остаточного ресурса как своего рода систему управления процессом эксплуатации и технического обслуживания.