Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
примерные ответы для зачёта математика).docx
Скачиваний:
6
Добавлен:
22.07.2019
Размер:
258.19 Кб
Скачать

8 Вопрос

Решение уравнений высших степеней. В общем случае уравнение степени выше четвертой не разрешимо в радикалах. Однако, иногда можно отыскать корни уравнения высшей степени, представив его в виде призведения многочленов степени не выше четвертой. Таким образом, разложение многочлена на множители является основным методом решения таких уравнений, поэтому, рекомендуем подробно изучить этот раздел, прежде чем двигаться дальше. Достаточно часто рассматриваются уравнения высших степеней с целыми коэффициентами. В этом случае можно попытаться найти рациональные корни и понизить степень исходного уравнения хотя бы до четвертой делением многочлена на многочлен. На их решении и остановимся. Уравнения высших степеней с целыми коэффициентами. Любое уравнение вида можно свести к приведенному уравнению той же степени домножив обе его части на и выполнив замену переменной Полученные коэффициенты тоже будут целыми. Таким образом, будем решать приведенное уравнение степени n с целыми коэффициентами вида Алгоритм решения. Находим целые корни уравнения. Целые корни уравнения , i=1, 2, …, m (m – количество целых корней уравнения) находятся среди делителей свободного члена . То есть, первым делом выписываем делители свободного члена и подставляем их по очереди в исходное равенство для проверки. Перебираем их по очереди, пока не получим тождество. Как только тождество получено, то первый целый корень уравнения найден и уравнение предстает в виде , где - корень уравнения, а - частное от деления на . Продолжаем подставлять выписанные ранее делители в уравнение , начиная с (так как корни могут повторяться). Как только получаем тождество, то корень найден и уравнение предстает в виде , где - частное от деления на . И так продолжаем перебор делителей, начиная с . В итоге найдем все m целых корней уравнения и оно представится в виде , где - многочлен степени n-m. Весь этот процесс удобно представлять в виде схемы Горнера. Дробных корней приведенное уравнение с целыми коэффициентами иметь не может. Находим оставшиеся корни (иррациональные и/или комплексные) из уравнения любым способом.

Ребят вот ещё ссылка для 8 ворд нихуя как надо не открывает))

http://www.cleverstudents.ru/equations_of_higher_degree.html

10Вопрос

Интегрирование дробно-рациональных функций.

Определение дробно-рациональной функции.

Определение 1.

Целой функцией называется многочлен (полином).

Определение 2.

Дробно-рациональной функцией называется дробь, числителем и знаменателем которой являются многочлены.

Определение 3.

Дробно-рациональная функция называется неправильной рациональной дробью, если степень числителя не меньше степени знаменателя(n m).

Определение 4. Дробно-рациональная функция называется правильной, если степень числителя меньше степени знаменателя.

Теорема:

Любую неправильную рациональную дробь можно представить в виде суммы целой функции и правильной рациональной дроби.

Постановка задачи интегрирования дробно-рациональной функции.

- задача свелась к интегрированию правильной рациональной дроби.

Простейшие рациональные дроби.

Простейшими рациональными дробями являются рациональные дроби:

1) 

2) 

3) 

Выделяем полный квадрат и делаем замену переменной:

Тогда интеграл примет вид:

Делаем обратную замену переменной и получаем окончательный ответ.

Разложение правильной рациональной дроби на сумму простейших дробей.

Дана правильная дробь:

Теорема 1. Если знаменатель Q(x) имеет любые корни, то правильная дробь разлагается на сумму простейших дробей 1 и 2 типа. (1)

Интегрирование правильной рациональной дроби.

сумме интегралов от простейших дробей (см. формулу 1 из 9.4).