Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4. ОПТИКА кристаллов.doc
Скачиваний:
17
Добавлен:
30.07.2019
Размер:
491.01 Кб
Скачать

7.3.3 Связь показателя преломления с плотностью и атомной массой

В 1863 г. Гладстон и Дейл предложили эмпирическую формулу, связывающую показатель преломления и плотность вещества в растворе:

(n-1)/d= K,

где n — показатель преломления, d — плотность, а К — удельная преломляющая способность. Они показали также, что удельная преломляющая способность растворов определяется путем сложения этих характеристик составляющих раствор компонентов:

[{nl-l)/dl}wi+[{n2-l)/d2)w2 = [(n-l)/dj(wi+u»2),

где w1 и w2 — массы компонентов. Переход жидкости в твердое состояние весьма слабо влияет на удельную преломляющую способность вещества.

Таким образом, если определены удельные преломляющие способности смеси или соединения (по стеклам соответствующего состава либо по кристаллам чистых соединений) и измерена их плотность, можно приблизительно рассчитать показатель преломления. К настоящему времени определены удельные преломляющие способности ряда стандартных молекул, входящих в состав минералов, и найдены приемлемые соотношения между определяемыми эмпирически и рассчитанными значениями показателей преломления сложных природных стекол .

Более сложная формула, описывающая взаимосвязь между показателем преломления и плотностью, была выведена в 1880 г. независимо друг от друга Г. Лорентцом и Л. Лоренцом. Она выглядит следующим образом:

Для силикатных стекол и полевых шпатов эта формула, как и более простое уравнение Гладсто-на и Дейла, выполняется в одинаковой степени удовлетворительно.

Хотя в настоящем разделе рассматриваются изотропные вещества, здесь в связи с проблемой зависимости между показателем преломления и составом минерала уместно забежать немного вперед и взглянуть на свойства некоторых кристаллических соединений (в том числе и анизотропных, имеющих более одного значения главного показателя преломления).

Считается, что минералы, содержащие тяжелые элементы, в основном имеют высокие показатели преломления. Такая точка зрения соответствует действительности только в частных случаях, так как существует множество не подтверждающих это положение примеров. Сразу же вспоминается алмаз (относящийся к кубической син-гонии, т.е. изотропный), который хотя и сложен углеродом, т.е. легким элементом (атомная масса 12), но имеет высокий показатель преломления (2,417). Рассмотрим табл. 7.1, в которой представлены группы аналогичных по структуре минералов, расположенные в порядке возрастания их показателей преломления. Как видим, совершенно неверно предполагать наличие какой-либо простой зависимости между атомной массой элемента и показателем преломления даже в пределах одного класса соединений.

Какая бы зависимость ни существовала, она должна прежде всего определяться характером атомных связей и только потом — внутренней электронной конфигурацией катиона, тогда как масса его ядра оказывает очень небольшое влияние.

Определение показателя преломления

Прежде чем перейти к описанию поведения света при его взаимодействии с анизотропными веществами, рассмотрим методы определения показателей преломления. Они одинаковы для изотропных и анизотропных веществ, только у последних показатели преломления изменяются в зависимости от направления распространения света в веществе и состояния его поляризации.