Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.rtf
Скачиваний:
11
Добавлен:
04.08.2019
Размер:
373.03 Кб
Скачать

14)Дифракция Фраунгофера.Дифракция света на щели.Дифракционная решётка.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Дифракция Фраунгофера наблюдается тогда, когда число зон Френеля меньше одного , при этом приходящие в точку волны являются практически плоскими. В противоположность этому, при дифракции Френеля изображение меняет также свою форму и существенно искажается.Дифракционные явления Фраунгофера имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности, дифракционных решёток.

Рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае.Математическое представление принципа Гюйгенса используется для написания исходного уравнения.Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны λ падающую на экран с щелью, ширина которой a.Если разрез находится в плоскости x′-y′, с центром в начале координат, тогда может предполагаться, что дифракция производит волну ψ на расстоянии r, которая расходится радиально и вдалеке от разреза.Расстояние до точки наблюдения много больше характерного размера щели (ширины).

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.Виды решёток: 1)Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете.

2)Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых «антибликовых» очках.

15)Электрический заряд.Закон Кулона.Напряжённость электрического поля.Принцип суперпозиции.Разность потенциалов.

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон.

Зако́н Куло́на — это закон о взаимодействии точечных электрических зарядов.Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона: Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы F действующей на пробный заряд, помещенный в данную точку поля, к величине этого заряда q: E = F/q

При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит: результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

1.Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

2.Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

3.Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

Разность потенциалов(Электри́ческое напряже́ние) между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда.Единицей измерения напряжения в системе СИ является вольт.

16)Тепловое излучение.Законы Кирхгофа,Стефана - Больцмана,Вина.Формула Планка,квантовый характер излучения.

Теплово́е излуче́ние — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.Примером теплового излучения является свет от лампы накаливания.Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции).

Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.Сформулированы Густавом Кирхгофом в 1845 году.Первый закон: Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком). Второй закон: Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю.

Стефана — Больцмана закон излучения, утверждает пропорциональность 4-й степени абсолютной температуры Т объёмной плотности энергии равновесного излучения r.

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу излучения :

uv = v3f(v/T), где uv - плотность энергии излучения, v - частота излучения, T - температура излучающего тела, f - функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений. В 1896 году Вин на основе дополнительных предположений вывел второй закон:

uv = C1v3e-C2v/t , где uv — плотность энергии излучения, v - частота излучения, Т - температура излучающего тела, С1,С2 — константы.

Закон смещения Вина. Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина: λmax = 0,0028999/Т,где T — температура в кельвинах, а λmax — длина волны с максимальной интенсивностью в метрах.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка: I(v,T) = ((2hv3)/c2)*1/(ehv/kT - 1), где I(ν,T)dν — мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + dν.

Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. Этому свойству в классической электродинамике соответствует круговая правая и левая поляризация электромагнитной волны.