Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
механника.doc
Скачиваний:
5
Добавлен:
06.08.2019
Размер:
264.7 Кб
Скачать

29. Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению F (t) = ma (t) = –m ω2 x (t). Амплитуда — максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, (м)

Период — промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), (сек)

Частота — число колебаний в единицу времени, f (Гц, сек−1).

Период колебаний T и частота f — обратные величины;

и

31. Физическим маятником (ФМ) называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси. Точка О пересечения этой оси с вертикальной плоскостью, проходящей через центр масс маятника, называется точкой подвеса.

32. Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.

33. Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени. Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону: Резона́нс— явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.

34. При сложении двух гармонических колебаний одинакового направления и частоты, результирующее смещение будет суммой ( ) смещений x1 и x2 , которые запишутся следующими выражениями:

Сумма двух гармонических колебаний также будет гармоническим колебанием той же круговой частоты:

=

35. Бие́ния — явление, возникающее при наложении двух гармонических колебаний выражающееся в периодическом уменьшении и увеличении амплитуды суммарного сигнала.

36. Фигу́ры Лиссажу́ — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях.

37. Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной. Уравнение плоской одномерной синусоидальной волны:

38. и

здесь v есть фазовая скоpость волны, а вид функции f может быть любым. Наиболее интеpесными являются пеpиодические синусоидальные волны, когда функция f пpедставляет собой синус или косинус аpгумента (синус и косинус отличаются дpуг от дpуга только сдвигом по фазе на /2). В качестве аpгумента синуса не м ожет быть пpосто (x-vt), т.к. эта величина pазмеpная, тогда как аpгумент синуса должен быть безpазмеpным. Поэтому синусоидальная волна описывается следующим уpавнением:

39. ВОЛНОВОЕ УРАВНЕНИЕ - линейное однородное ур-ние в частных производных гиперболич. Типа:

где t — время, х, у, z — пространственные декартовы координаты, W= W(х, у, z, t) — ф-ция, характеризующая возмущение среды в точке с координатами х, у, z в момент времени t, с — параметр с размерностью скорости, ( — оператор Д'Аламбера (даламбертиан), D — оператор Лапласа

40, Скорость, с которой распространяется возмущение в упругой среде, называют скоростью волны* Она определяется упругими свойствами среды. Расстояние, на которое распространяется волна за время, равное периоду колебаний в ней, называется длиной волны.

41. Вектор Пойнтинга— вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор S можно определить через векторное произведение двух векторов:

где E и H — векторы напряжённости электрического и магнитного полей соответственно. где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственноЭтот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.

43. Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; Как и любая волна, звук характеризуется амплитудой и спектром частот.

Звуковой сигнал можно представить, как совокупность различных синусоидальных составляющих. Каждая составляющая характеризуется рядом параметров. Громкость звука - определяется амплитудой сигнала. Чем выше амплитуда звуковой волны, тем громче сигнал

44. Гидроста́тика — раздел физики сплошных сред, изучающий равновесие жидкостей, в частности, в поле тяжести. Закон Паскаля формулируется так:

Давление, производимое на покоящуюся жидкость или газ, передается в любую точку жидкости или газа одинаково по всем направлениям. Зако́н Архиме́да — один из главных законов гидростатики и статики газов. Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа)(называемая силой Архимеда)

FA = ρgV,

где ρ — плотность жидкости (газа), g — ускорение свободного падения, а V — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.