Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоремы.doc
Скачиваний:
10
Добавлен:
15.08.2019
Размер:
103.42 Кб
Скачать

Неравенство минковского

Неравенство для p-х степеней чисел, имеющее вид:

, где целое p>1, а ak и bk – неотрицательные числа. Н.М. является обобщением известного «неравенства треугольника», утверждающего, что длина одной стороны треугольника не больше суммы длин двух других его сторон; для n-мерного пространства расстояние между точками x=(x1, x2, …, xn) и y=(y1, y2, …, yn) определяется числом

Н.М. было установлено немецким математиком Г. Минковским в 1896 г.

Формулы мольвейде

Формулы плоской тригонометрии, выражающие следующую зависимость между сторонами (их длинами) и углами треугольника:

; , где a, b, c – стороны, а A, B, C – углы треугольника. Ф.М. названы по имени немецкого математика К. Мольвейде, использовавшего их, хотя эти формулы были известны и другим математикам.

Бином ньютона

Название формулы, выражающей целую неотрицательную степень двучлена a+b в виде суммы степеней его слагаемых. Б.Н. имеет вид:

, где Cnk – биноминальные коэффициенты, равные числу сочетаний из n элементов по k, т.е.

или .

Если биноминальные коэффициенты для различных n=0, 1, 2, …, записать в последовательно идущие строки, то придём к треугольнику Паскаля.

В случае произвольного действительного числа (а не только целого неотрицательного) Б.Н. обобщается в биноминальный ряд, а в случае увеличения числа слагаемых с двух на большее число – в полиномиальную теорему.

Полиномиальная теорема

Обобщение формулы бинома Ньютона на случай возведения в целую неотрицательную степень n суммы k слагаемых (k>2):

, где суммирование в правой части распространено на всевозможные наборы целых неотрицательных чисел a1, a2, …, ak, дающих в сумме n. Коэффициенты A(n)a1, a2, … ,ak носят название полиномиальных и выражаются следующим образом:

При k=2 полиномиальные коэффициенты становятся биноминальными коэффициентами.

Теорема польке

Формулируется так: три отрезка произвольной длины, лежащие в одной плоскости и исходящие из общей точки под произвольными углами друг к другу, могут быть приняты за параллельную проекцию пространственного ортогонального репера i, j, k (|i| = |j| =|k|).

Теорема была сформулирована немецким геометром К. Польке (1860) без доказательства, а затем была обобщена немецким математиком Г. Шварцем, который дал её элементарное доказательство. Теорему Польке-Шварца можно формулировать так: любой невырожденный четырёхугольник с его диагоналями можно рассматривать как параллельную проекцию тетраэдра, подобного любому данному. Т.П. имеет большое практическое значение (любой четырёхугольник с его диагоналями можно принять, например, за изображение правильного тетраэдра) и является одной из основных теорем аксонометрии.

Теорема птолемея

Теорема элементарной геометрии, устанавливающая зависимость между сторонами и диагоналями четырёхугольника, вписанного в окружность: во всяком выпуклом четырёхугольнике, вписанном в окружность, произведение диагоналей равно сумме произведений его противоположных сторон, т.е. имеет место равенство:

AC*BD = AB*CD + BC*AD

Т.П. названа по имени древнегреческого учёного Клавдия Птолемея, доказавшего эту теорему. Т.П. используется при решении задач по элементарной геометрии, при доказательстве частного случая теоремы сложения синусов.