Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК КСЕ ФГОС-3 для студентов.doc
Скачиваний:
26
Добавлен:
19.08.2019
Размер:
991.74 Кб
Скачать

Раздел 5. Панорама современного естествознания

Космология

Космология – один из тех разделов естествознания, которые всегда находятся на стыке наук. Строение и эволюция Вселенной изучаются космологией. Космология использует достижения и методы физики, математики, философии. Предмет космологии – весь окружающий нас мегамир, вся «большая Вселенная», и задача состоит в описании наиболее общих свойств, строения и эволюции Вселенной.

С древних времен люди считали Вселенную неизменной (стационарной). С созданием общей теории относительности Эйнштейна появились и первые космологические модели, основанные на этой теории. Первую из них предложил сам автор ОТО. Она также была стационарной. Для того, чтобы обеспечить стационарность модели Эйнштейн вынужден был ввести гипотетические силы космологического отталкивания, которые компенсировали бы силы всемирного тяготения между галактиками, препятствуя сжатию Вселенной.

В 1922 г. русский математик А.А. Фридман на основании решений уравнений ОТО показал, что Вселенная не может быть стационарной. Она должна либо сжиматься, либо расширяться.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятия начала Вселенной как сингулярности (т. е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 г. американский астроном Э. Хаббл обнаружил существования странной зависимости между расстоянием и скоростью галактик: все галактики удаляются от нас, причем со скоростью, которая возрастает пропорционально расстоянию, т.е. Вселенная расширяется.

Достижения науки расширяли возможности в познании окружающего Человека мира. Предпринимались новые попытки объяснить с чего же все началось. Жорж Леметр был первым, кто поставил вопрос о происхождении наблюдаемой крупномасштабной структуры Вселенной. Им была выдвинута концепция "Большого Взрыва" так называемого "первобытного атома" и последующего превращения его осколков в звезды и галактики. Конечно, с высоты современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г. А. Гамова (1904–1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели "начала" эволюционирующей Вселенной "первоатом" Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины – один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого "первоатома" по мнению Г. А. Гамова образовался своеобразный космологический котел с температурой порядка трех миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца – отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после "Большого Взрыва".

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы , а его сотрудники Альфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распостраненности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Ученые стали искать иные физические модели "начала". В 1961 году академик Я. Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц – протонов, электронов и нейтрино. Три года спустя астрофизики И. Д. Новиков и А. Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий – горячей и холодной – и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

Почти в то же время группа американских исследователей во главе с физиком Робертом Дикке, не зная об опубликованных результатах работы Гамова, Альфера и Германа, возродила исходя из иных теоретических соображений горячую модель Вселенной. Посредством астрофизических измерений Р.Дикке и его сотрудники нашли подтверждение существования космического теплового излучения. Это эпохальное открытие позволило получить важную, ранее недоступную информацию о начальных порах эволюции астрономической Вселенной. Зарегистрированное реликтовое излучение есть не что иное, как прямой радиорепортаж об уникальных общевселенских событиях, имевших место вскоре после "Большого Взрыва" – самого грандиозного по своим масштабам и последствиям катастрофического процесса в обозримой истории Вселенной.

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель "начала". Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории – о нейтронном составе "космического яйца" и горячем состоянии молодой Вселенной – проверку временем выдержала только последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения.

В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на эры.

Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность эры 0,0001 с, температура 1012 градусов по Кельвину, плотность 1014 г/см3. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов.

Эра лептонов (легких частиц вступающих в электромагнитные взаимодействия). Продолжительность эры 10 с, температура 1010 градусов по Кельвину, плотность 104 г/см3. Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы энергии Вселенной – приходится на фотоны. К концу эры температура падает с 1010 до 3000 градусов по Кельвину, плотность с 104 г/см3 до 10-21 г/см3. Главную роль играет излучение, которое в конце эры отделяется от вещества.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

Эволюцию претерпевают все космические объекты – звезды, планеты, галактики. Сейчас известно, что обычные звезды в ходе претерпеваемых изменений превращаются в так называемые «белые карлики», «нейтронные звезды» и «черные дыры».

Что такое «белый карлик»? Это электронная постзвезда, образующаяся в том случае, когда звезда на последней стадии своей эволюции имеет массу, меньшую 1,2 солнечной массы. Превращение происходит путем медленного сжатия звезды, которая продолжает светить уже не за счет ядерных реакций, а в результате освобождающейся в процессе сжатия гравитационной энергии. Диаметр «белого карлика» равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность – 10 т/см3 – в сотни тысяч раз больше земной плотности. Такую плотность можно получить, утрамбовав грузовой автомобиль в объем наперстка. В течение 1 млрд лет «белый карлик» медленно остывает, превращаясь в «черный карлик» – ничего не излучающий холодный «труп» звезды.

Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. В этом случае на предконечном этапе происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурный процесс ядерных реакций, в которые вступают остатки ядерного вещества звезды. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Остаток звезды уменьшается до размеров в 20-30 км, а средняя ее плотность возрастает до 100 млн т/см3, что, используя прежнее сравнение, равнозначно утрамбовке в наперсток миллиона грузовых автомобилей. Образующийся объект и получил название «нейтронная звезда». Она состоит из протонов и нейтронов, силы гравитации разрушили в ней сложные ядра, и вещество снова стало состоять из отдельных элементарных частиц. Открытые в 1967 г. пульсары (источники пульсирующего, периодически изменяющегося импульсного излучения) как раз и являются намагниченными вращающимися нейтронными звездами.

В случае же, если масса постзвезды (звезды на заключительной стадии своего существования) превысит 2 солнечные массы, она должна превратиться в «черную дыру» с радиусом 5-10 км. Черные дыры имеют и другие названия: «застывшая звезда», «гравитационная могила», «коллапсар», «флуктуар», «отон». Пространство черной дыры как бы «вырвано» из пространства Метагалактики. Если вырезать в листе бумаги дыру, то это даст наглядную двумерную аналогию черной дыры в трехмерном пространстве. Вещество и излучение проваливаются в нее и не могут выйти обратно.

Раньше «черные дыры» считались ненаблюдаемыми. Теперь же наука располагает фактами, которые достаточно убедительно свидетельствуют об их существовании. Они отождествляются с источниками сильного рентгеновского излучения. Высказаны предположения о существовании первичных, реликтовых «мини-черных дыр», образовавшихся на раннем этапе развития Вселенной. Реликтовые черные дыры вызывают исключительный интерес, поскольку в них органически объединяются микро- и макромасштабы. Теоретические расчеты показывают, что, обладая гигантской массой 1015 г, они должны иметь микроскопический размер до 10 -13 см.

На нынешней стадии развития физической космологии на передний план выдвинулась задача создания тепловой истории Вселенной, в особенности сценария образования крупномасштабной структуры Вселенной.

Последние теоретические изыскания физиков велись в направлении следующей фундаментальной идеи: в основе всех известных типов физических взаимодействий лежит одно универсальное взаимодействие; электромагнитное, слабое, сильное и гравитационное взаимодействия являются различными гранями единого взаимодействия, расщепляющегося по мере понижения уровня энергии соответствующих физических процессов. Иначе говоря, при очень высоких температурах (превышающих определенные критические значения) различные типы физических взаимодействий начинают объединяться, а на пределе все четыре типа взаимодействия сводятся к одному единственному протовзаимодействию, называемому «Великим синтезом».

Согласно квантовой теории то, что остается после удаления частиц материи (к примеру, из какого-либо закрытого сосуда с помощью вакуумного насоса), вовсе не является пустым в буквальном смысле слова, как это считала классическая физика. Хотя вакуум не содержит обычных частиц, он насыщен «полуживыми», так называемыми виртуальными тельцами. Чтобы их превратить в настоящие частицы материи, достаточно возбудить вакуум, например, воздействовать на него электромагнитным полем, создаваемым внесенными в него заряженными частицами.

Но что же все таки явилось причиной «Большого Взрыва»? Судя по данным астрономии физическая величина космологической постоянной, фигурирующей в эйнштейновских уравнениях тяготения, очень мала, возможно близка к нулю. Но, даже будучи столь ничтожной, она может вызвать очень большие космологические последствия. Развитие квантовой теории поля привело к еще более интересным выводам. Оказалось, что космологическая постоянная является функцией от энергии, в частности зависит от температуры. При сверхвысоких температурах, господствовавших на самых ранних фазах развития космической материи, космологическая постоянная могла быть очень большой, а главное, положительной по знаку. Говоря другими словами, в далеком прошлом вакуум мог находиться в чрезвычайно необычном физическом состоянии, характеризуемом наличием мощных сил отталкивания. Именно эти силы и послужили физической причиной «Большого Взрыва» и последующего быстрого расширения Вселенной.

Рассмотрение причин и последствий космологического «Большого Взрыва» было бы не полным без еще одного физического понятия. Речь идет о так называемом фазовом переходе (превращении), т. е. качественном превращении вещества, сопровождающимся резкой сменой одного его состояния другим. Советские ученые-физики Д. А. Киржниц и А. Д. Линде первыми обратили внимание на то, что в начальной фазе становления Вселенной, когда космическая материя находилась в сверхгорячем, но уже остывающем состоянии, могли происходить аналогичные физические процессы (фазовые переходы).

Дальнейшее изучение космологических следствий фазовых переходов с нарушенной симметрией привело к новым теоретическим открытиям и обобщениям. Среди них – обнаружение ранее неизвестной эпохи в саморазвитии Вселенной. Оказалось, что в ходе космологического фазового перехода она могла достичь состояния чрезвычайно быстрого расширения, при котором ее размеры увеличились во много раз, а плотность вещества оставалась практически неизменной. Исходным же состоянием, давшим начало раздувающейся Вселенной, считается гравитационный вакуум. Резкие изменения, сопутствующие процессу космологического расширения пространства характеризуются фантастическими цифрами. Так предполагается, что вся наблюдаемая Вселенная возникла из единственного вакуумного пузыря размером меньше 10–33 см! Вакуумный пузырь, из которого образовалась наша Вселенная, обладал массой, равной всего-навсего одной стотысячной доле грамма.

В настоящее время еще нет всесторонне проверенной и признанной всеми теории происхождения крупномасштабной структуры Вселенной, хотя ученые значительно продвинулись в понимании естественных путей ее формирования и эволюции. С 1981 года началась разработка физической теории раздувающейся (инфляционной) Вселенной. К настоящему времени физиками предложено несколько вариантов данной теории. Предполагается, что эволюция Вселенной, начавшаяся с грандиозного общекосмического катаклизма, именуемого «Большим Взрывом», в последующем сопровождалась неоднократной сменой режима расширения.

Согласно предположениям ученых, спустя 10–43 секунд после «Большого Взрыва» плотность сверхгорячей космической материи была очень высока (1094 грамм/см3). Высока была и плотность вакуума, хотя по порядку величины она была гораздо меньше плотности обычной материи, а поэтому гравитационный эффект первобытной физической «пустоты» был незаметен. Однако в ходе расширения Вселенной плотность и температура вещества падали, тогда как плотность вакуума оставалась неизменной. Это обстоятельство привело к резкому изменению физической ситуации уже спустя 10–35 секунды после «Большого Взрыва». Плотность вакуума сначала сравнивается, а затем, через несколько сверхмгновений космического времени, становится больше ее. Тогда и дает о себе знать гравитационный эффект вакуума – его силы отталкивания вновь берут верх над силами тяготения обычной материи, после чего Вселенная начинает расширяться в чрезвычайно быстром темпе (раздувается) и за бесконечно малую долю секунды достигает огромных размеров. Однако этот процесс ограничен во времени и пространстве. Вселенная, подобно любому расширяющемуся газу, сначала быстро остывает и уже в районе 10–33 секунды после «Большого Взрыва» сильно переохлаждается. В результате этого общевселенческого «похолодания» Вселенная от одной фазы переходит в другую. Речь идет о фазовом переходе первого рода – скачкообразном изменении внутренней структуры космической материи и всех связанных с ней физических свойств и характеристик. На завершающей стадии этого космического фазового перехода весь энергетический запас вакуума превращается в тепловую энергию обычной материи, а в итоге вселенская плазма вновь подогревается до первоначальной температуры, и соответственно происходит смена режима ее расширения.

Не менее интересен, а в глобальной перспективе более важен другой результат новейших теоретических изысканий – принципиальная возможность избегания начальной сингулярности в ее физическом смысле. Речь идет о совершенно новом физическом взгляде на проблему происхождения Вселенной.

Оказалось, что вопреки некоторым недавним теоретическим прогнозам (о том, что начальную сингулярность не удастся избежать и при квантовом обобщении общей теории относительности) существуют определенные микрофизические факторы, которые могут препятствовать беспредельному сжатию вещества под действием сил тяготения.

Еще в конце тридцатых годов было теоретически обнаружено, что звезды с массой, превышающей массу Солнца более чем в три раза, на последнем этапе своей эволюции неудержимо сжимаются до сингулярного состояния. Последнее в отличие от сингулярности космологического типа, именуемой фридмановской, называется шварцшильдовским (по имени немецкого астронома, впервые рассмотревшего астрофизические следствия эйнштейновской теории тяготения). Но с чисто физической точки зрения оба типа сингулярности идентичны. Формально они отличаются тем, что первая сингулярность является начальным состоянием эволюции вещества, тогда как вторая – конечным.

Согласно недавним теоретическим представлениям гравитационный коллапс должен завершиться сжатием вещества буквально «в точку» – до состояния бесконечной плотности. По новейшим же физическим представлениям коллапс можно остановить где-то в районе планковской величины плотности, т. е. на рубеже 1094 грамм/см3. Это значит, что Вселенная возобновляет свое расширение не с нуля, а имея геометрически определенный (минимальный) объем и физически приемлемое, регулярное состояние.

Эволюционная химия

C шестидесятых годов 20-го века начинает оформляться четвертый концептуальный уровень химического знания (эволюционная химия), в основе которого лежит исследование процессов самопроизвольного синтеза новых химических соединений, имеющих по сравнению с исходными продуктами более низкую энтропию. Последнее означает, что получаемые продукты являются более сложными и высокоорганизованными по сравнению с исходными. Подобное наблюдается в живых системах. Поэтому современный концептуальный уровень химической науки подразумевает использование химического опыта живой природы, т.е. исследование самоорганизации химических систем. С другой стороны решение проблем эволюционной химии позволит приблизиться к разгадке ключевого вопроса биологии – возникновения и эволюции живого, т.к. в основе большинства биологических процессов лежат процессы химические.

Исключительно важную роль в высокой эффективности биохимических процессов играют ферменты – биокатализаторы. Поэтому для практических нужд ведутся исследования моделирования ферментов с целью использования их в химических реакциях, а также повышения их устойчивости (вне живой клетки ферменты обычно быстро разрушаются). И в этом направлении уже достигнуты определенные успехи.

В концептуальном плане очень важным оказалось осознание идеи эволюции вещества, которая до последней трети 20-го века химиков практически не интересовала (в отличие от биологии, где эволюционные идеи развивались с конца 18-го века, и физики, куда идея эволюции материи стала внедряться со второй четверти 20-го века).

Первые атомы – водорода и гелия возникли примерно через миллион лет после начала расширения Вселенной (Большого Взрыва) еще в дозвездную эру. Ядра атомов более тяжелых химических элементов стали синтезироваться в звездах первого поколения и при взрывах сверхновых через несколько миллиардов лет от Начала. Таким образом, вторичный межзвездный газ был уже существенно богаче по составу химических элементов.

По мере понижения его температуры и возникновения первых твердых тел возникают первые проявления катализа. Однако его роль в химической эволюции до появления более или менее сложных органических молекул была крайне невелика. После того как физические условия приблизились к условиям, существовавшим на молодой Земле, где был накоплен необходимый минимум неорганических и органических соединений, роль катализаторов начала резко возрастать.

В 1964 г. А.П.Руденко выдвинул теорию саморазвития открытых каталитических систем, которая вскоре переросла в общую теорию химической эволюции и биогенеза. В ней показано, что эволюционирующими элементами в развитии химических систем являются те структуры и органические соединения, которые усиливали активность и селективность действия катализаторов. Таким образом, на предбиологической стадии развития химических систем происходил отбор тех веществ и химических реакций, которые необходимы для возникновения живых организмов. Саморазвитие каталитической системы происходит за счет поглощения катализаторами энергии, выделяющейся в ходе реакции, т.е., эволюционное преимущество получают каталитические системы, в которых протекают экзотермические реакции, являющиеся средством отбора прогрессивных эволюционных изменений катализаторов.

Космогония

Космогония (греч. kosmogonía, от kósmos — мир, Вселенная и gone, goneia — рождение) – область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел — Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще.

Космогонические гипотезы 18—19 вв. относились главным образом к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретической астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа которых была выяснена только в 20-х гг.

История космогонических исследований

После общих идей о развитии небесных тел, высказанных ещё греческими философами 4—1 вв. до н. э. (Левкипп, Демокрит, Лукреций), наступил многовековой период господства теологии. Лишь в 17 в. Р. Декарт отбросил миф о сотворении мира и нарисовал картину образования всех небесных тел в результате вихревого движения мельчайших частиц материи. Фундамент научной планетной К. заложил И. Ньютон, который обратил внимание на закономерности движения планет. Открыв основные законы механики и закон всемирного тяготения, он пришёл к выводу, что устройство планетной системы не может быть результатом случайного стечения обстоятельств.

В 1755 И. Кант опубликовал книгу "Всеобщая естественная история и теория неба...", в которой впервые дал космогоническое объяснение закономерностям движения планет, выдвинув гипотезу об образовании планетной системы из рассеянной материи, заполнявшей всё пространство этой системы и находившейся в единообразном вращательном движении вокруг центрального сгущения — Солнца. В конце 18 в. В. Гершель, наблюдая небо в построенные им большие телескопы, открыл туманности овальной формы, обладающие различными степенями сгущения к центральному яркому ядру. Возникла гипотеза об образовании звёзд из туманностей путём их "сгущения".

Опираясь на эти наблюдения Гершеля и на закономерности движения планет, П. Лаплас выдвинул гипотезу о происхождении Солнечной системы, во многом сходную с гипотезой Канта. (Когда интересуются главным образом идеей естественного образования Солнечной системы из протяжённой рассеянной среды, часто говорят о единой гипотезе Канта — Лапласа.) Гипотеза Лапласа об образовании Солнечной системы — Солнца, планет и их спутников из вращающейся и сжимающейся газовой туманности состояла в том, что в результате ускорения вращения при сжатии разряженная внешняя часть туманности (протяжённая атмосфера образующегося Солнца) становится всё более сплюснутой, а когда центробежная сила на экваторе стала равной по величине силе тяготения, она приняла чечевицеобразную форму. Вещество на остром ребре чечевицы перестало участвовать в дальнейшем сжатии, а оставалось на месте, образуя газовый диск. Затем он разделился на отдельные кольца и вещество каждого кольца собралось в сгусток, превратившийся затем в планету. При сжатии этих сгустков процесс зачастую повторялся, приводя к образованию спутников планет. Центральный сгусток туманности превратился в Солнце.

Гипотеза Лапласа не смогла объяснить медленное вращение Солнца, прямое вращение планет, наличие спутников с обратным движением и спутников, период обращения которых меньше периода вращения планеты. Привлечение современных астрофизических данных позволило в середине 20 в. по-новому развить идею Лапласа об отделении вещества от сжимающегося протосолнца в результате наступления ротационной неустойчивости. При этом механизм формирования планет оказался отличным от предполагавшегося Лапласом. Тем не менее гипотеза Лапласа сыграла выдающуюся роль в истории науки.

В конце 19 в. появилась гипотеза американских учёных Ф. Мультона и Т. Чемберлина, предполагавшая образование планет из мелких твёрдых частиц, названных ими "планетезималями". Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путём застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет.

Идея об образовании звёзд путём сгущения рассеянного туманного вещества сохранилась до нашего времени и разделяется большинством исследователей. После открытия механического эквивалента тепла была подсчитана энергия. освобождающаяся при сжатии звезды. Оказалось, что её хватило бы для поддержания излучения Солнца в течение 107—108 лет. В то время такой срок казался достаточным. Но позже изучение истории Земли показало, что Солнце излучает несравненно дольше. В начале 20 в. проблему источников энергии звёзд безуспешно пытались решить с помощью радиоактивных элементов, в то время лишь недавно открытых. Установление взаимосвязи массы и энергии, показавшее, что звёзды, излучая, теряют массу, привело к гипотезам о возможности аннигиляции вещества в недрах звёзд, т. е. превращения вещества в излучение. В этом случае превращение массивных звёзд в звёзды малой массы длилось бы 1013—1015 лет. Правильной оказалась гипотеза о трансмутации элементов, т. е. об образовании более сложных атомных ядер из простых, в первую очередь — гелия из водорода. В 1938—39 были выяснены конкретные ядерные реакции, могущие обеспечить излучение звёзд, и это явилось началом современного этапа развития звёздной К.

В разработке К. галактик делаются лишь первые шаги. Проводится классификация галактик и их скоплений. Изучаются эволюционные изменения звёзд и газовой составляющей галактик, их химического состава и др. параметров. Изучается природа начальных возмущении, развитие которых привело к распаду расширяющегося газа Метагалактики на отдельные сгущения. Рассчитывается, как зависят морфологический тип и др. свойства галактик от массы и вращения этих первичных сгущений. Большое внимание привлекают компактные плотные ядра, имеющиеся у ряда галактик. Изучается природа мощного радиоизлучения, которым обладают некоторые галактики, и связь его с взрывными процессами в ядрах. Мощные взрывы, происходящие в квазарах и ядрах активных галактик — сейфертовских, N-галактик и др., — представляют собой существенные этапы эволюции галактик.

Планетная космогония

При выяснении вопроса, в каком состоянии находилось ранее вещество, ныне образующее планеты, важную роль играют закономерности движения планет — их обращение вокруг Солнца в одном направлении по почти круговым орбитам, лежащим почти в одной плоскости, — и деление планет на 2 группы, отличающиеся по массе и составу,— группу близких к Солнцу планет земного типа и группу далёких от Солнца планет-гигантов. При выяснении вопроса о том, откуда взялось около Солнца допланетное вещество, важную роль играет проблема распределения момента количества движения (МКД) между Солнцем и планетами: почему всего 2% общего МКД всей Солнечной системы заключено в осевом вращении Солнца, а 98% приходится на орбитальное движение планет, суммарная масса которых в 750 раз меньше массы Солнца?

В 40-х гг. 20 в. планетная космогония вернулась к классическим идеям Канта и Лапласа об образовании планет из рассеянного вещества, которые развивал советскийц ученый О.Ю. Шмидт. В настоящее время (70-е гг. 20 в.) является общепризнанным, что большинство планет аккумулировалось из твёрдого, а Юпитер и Сатурн также и из газового вещества, По-видимому, существовавшее вблизи экваториальной плоскости Солнца газово-пылевое облако простиралось до современных границ Солнечной системы.

Исходя из господствующих представлений об образовании Солнца из сжимающейся и вращающейся туманности, большинство астрономов считает, что протопланетное облако той или иной массы отделилось под действием центробежной силы от этой туманности на заключительной стадии её сжатия [Ф. Хойл (Великобритания), А. Камерон (США), Э. Шацман (Франция)]. Но, в отличие от Лапласа, рассматривавшего это отделение чисто механически, сейчас учитываются эффекты, связанные с наличием магнитного поля и корпускулярного излучения Солнца, Именно это позволило объяснить распределение МКД между Солнцем и планетами в рамках гипотез о совместном образовании Солнца и протопланетного облака.

Образование планет из протопланетного облака наиболее полно исследовано О. Ю. Шмидтом и его сотрудниками и сторонниками. Процесс можно условно разделить на 2 этапа. На первом этапе длившемся, вероятно, менее 106 лет из пылевой компоненты облака образовалось множество "промежуточных" тел размером в сотни км. На втором этапе длительностью около 108 лет из роя "промежуточных" тел и их обломков аккумулировались планеты. (У наиболее далёких планет — Урана, Нептуна, вещество которых было рассеяно по огромным кольцевым зонам, второй этап мог длиться около 109 лет.) Самые крупные планеты — Юпитер и Сатурн — на основной стадии аккумуляции вбирали в себя не только твёрдые тела, но и газы.

Разные гипотетические варианты процесса образования облака ведут к разным вариантам протекания первого этапа. "Промежуточные" тела должны были образоваться либо в результате собирания пыли в тонкий диск и распада этого диска на сгущения, либо в результате коагуляции пылинок, т. е. их "слипания".

Протекание аккумуляции планет из роя "промежуточных" тел практически не зависит от механизма их образования. Сперва они двигались по круговым орбитам в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное вещество — остатки "первичной" пыли и обломки, образовавшиеся, когда "промежуточные" тела сталкивались с большими относительными скоростями. Гравитационное взаимодействие "промежуточных" тел, усиливающееся по мере их роста, постепенно изменяло их орбиты, увеличивая средний эксцентриситет и средний наклон к центральной плоскости. Те из "промежуточных" тел, которые вырвались вперед в процессе роста, оказались зародышами будущих планет. При объединении многих тел в планеты произошло усреднение индивидуальных свойств движения отдельных объединяющихся тел, и потому орбиты планет получились почти круговыми и компланарными. Анализ процесса аккумуляции планет из роя твёрдых тел позволил О. Ю. Шмидту указать путь к объяснению происхождения прямого вращения планет и закона планетных расстояний.

Рост планет земной группы прекратился тогда, когда они вобрали в себя практически всё твёрдое вещество, имевшееся в районе их орбит (только у Марса часть вещества из его "зоны питания", вероятно, была поглощена массивным Юпитером). Но у планет-гигантов рост прекратился тогда, когда они действием своего притяжения выбросили из зоны своего формирования все "промежуточные" тела и их обломки, а также газы (в рассеянии последних важную роль могло сыграть интенсивное корпускулярное излучение молодого Солнца).

Эволюция Земли

Вопрос ранней эволюции Земли тесно связан с теорией ее происхождения. Сегодня известно, что наша планета образовалась около 4,5 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась ее масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля все сильнее разогревалась. При ударах на ней возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.

Чем крупнее были падавшие объекты, тем сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучиться в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100-1000 км могла приблизится к точке плавления. Дополнительное повышение температуры, вероятно, вызвал распад короткоживущих радиоактивных изотопов.

По-видимому, первые возникшие расплавы представляли собой смесь жидких железа, никеля и серы. Расплав накапливался, а затем вследствие более высокой плотности просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться еще на стадии ее формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определенная часть более тяжелого вещества все же успевала опустится под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.

Предположительно ядро образовалось за несколько сот миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристализовываться - так (возможно) зародилось твердое внутреннее ядро. К настоящему времени оно составляет 1,7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.

Развитие других оболочек продолжалось гораздо дольше и в некотором отношении не закончилось до сих пор.

Литосфера сразу после своего образования имела небольшую толщину и была очень неустойчивой. Она снова поглощалась мантией, разрушалась в эпоху так называемой великой бомбардировки (от 4,2 до 3,9 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки - многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стерли следы этого периода.

Около 3,8 млрд. лет назад сложилась первая легкая и, следовательно, "непотопляемая" гранитная кора. В то время планета уже имела воздушную оболочку и океаны; необходимые для их образования газы усиленно поставлялись из недр Земли в предшествующий период. Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров. Кислорода в ней было мало, но он вырабатывался в результате, во-первых, фотохимической диссоциации воды и, во-вторых, фотосинтезирующей деятельности простых организмов, таких как сине-зеленые водоросли.

600 млн лет назад на Земле было несколько подвижных континентальных плит, весьма похожих на современные. Новый сверхматерик Пангея появился значительно позже. Он существовал 300-200 млн. лет назад, а затем распался на части, которые и сформировали нынешние материки.

Эволюция атмосферы

На раннем этапе своей эволюции (4,5 – 4 млрд. лет назад) Земля, еще не имея гидросферы, по-видимому, уже обладала атмосферой, но очень разреженной. Она состояла, вероятно, в основном из молекул и атомов газов и паров, захваченных Землей из космического пространства – водорода, гелия, азота, воды, метана, аммиака, углекислого газа.

Существенное увеличение плотности атмосферы началось примерно 4 млрд. лет назад, вызванной активной дегазацией Земли вследствие изливавшихся на ее поверхность мантийных расплавов, которые в условиях чрезвычайно низкого атмосферного давления вскипали и выделяли в атмосферу летучие соединения, в частности, пары воды. В результате около 3 млрд. лет назад Земля уже имела мощную атмосферу с давлением до 4 атм, состоящую в основном из азота и углекислого газа.

Дальнейшая эволюция земной атмосферы связана с постепенным связыванием атмосферного углекислого газа и повышением в ней концентрации кислорода. Насыщение океанской коры водой сопровождалось в результате реакций гидратации связыванием избытка атмосферного углекислого газа в карбонатах (доломитах). В результате его концентрация в атмосфере существенно понизилась. Вследствие этого около 2,5 млрд. лет назад тепловое излучение от Земли стало почти беспрепятственно проникать через атмосферу (углекислый газ создает парниковый эффект) и температура на ее поверхности резко понизилась примерно с 90º до 6º С, что привело к грандиозному оледенению.

Существенную роль в уменьшении концентрации углекислого газа и насыщении атмосферы кислородом сыграл фотосинтез растений и микроорганизмов. Кроме того, обогащение атмосферы кислородом происходило вследствие фотодиссоциации паров воды высокочастотным электромагнитным излучением Солнца

Н2О НО + О

и образование солей из оксидов щелочных и щелочноземельных металлов

Na2O + 2Cl 2NaCl + O; CaO + 2F CaF2 + O.

Наряду с выделением кислорода шел и обратный процесс его поглощения свободным железом:

2Fe + O2 2FeO.

Процесс окисления свободного железа в мантии завершился около 600 млн. лет назад, что привело к увеличению выхода кислорода в атмосферу. Это способствовало быстрому развитию многоклеточных организмов.

В настоящее время выделяющийся в мантии кислород частично поглощается с образованием магнетита:

3FeO + О Fe3O4.

Расчеты показывают, что через 600 млн. лет все железо в мантии будет находиться в состоянии магнетита. В мантии магнетит устойчив, но при опускании его в ядро Земли будет происходить обратная реакция:

2Fe3O4 3FeO + 5О.

Свободный кислород через систему разломов срединных океанических хребтов устремится в атмосферу. Это приведет к быстрому увеличению давления до 10 атм и температуры до 250º С. Океан выкипит, что еще больше увеличит давление (до 350 атм) и температуру (до 450º С). Жизнь при таких условиях станет невозможной.

История атмосферы закончится через 5 млрд. лет, когда Солнце станет красным гигантом, и атмосфера Земли будет «сметена» солнечным ветром.

Географическая оболочка Земли

Предметом исследования физической географии, т.е. части географии, относящейся к естествознанию, является географическая оболочка Земли. Она представляет собой систему нескольких взаимосвязанных геосферных оболочек: части атмосферы (ниже озонового слоя), гидросферы и части литосферы (земная кора). Границы географической оболочки примерно совпадают с границами биосферы. Поэтому биосфера также является предметом изучения физической географии.

История развития географии связана с постепенным переходом от описательных методов изучения географических объектов и явлений к системно-динамическим методам, т.е. их исследованию в динамике, развитии, выявлению причинно-следственных связей между ними.

Большой вклад в становление географии как науки внес в первой половине 19 в. немецкий геолог и географ Гумбольдт. Он разработал учение о ландшафтах и ландшафтных зонах. В переводе с немецкого «ландшафт» означает местность с характерным для нее однотипным природоустройством, т.е. закономерным сочетанием рельефа, климата, растительности и др. и определенными участками поверхности суши. Однако физическая география не ограничивается рассмотрением только суши, поэтому в настоящее время понятие «ландшафт» часто заменяется понятием «географический комплекс».

Дальнейшее развитие ландшафтоведческого подхода осуществил русский географ В.В. Докучаев во второй половине 19 в., разработав учение о почвах, назвав их «зеркалом ландшафта».

В начале 20 в. в связи с ростом числа конкретных географических наук возникла проблема выявления их специфики с единых концептуальных позиций. Эта проблема была решена А.А. Григорьевым, разработавшим в 30-х годах концепцию географической оболочки. Он рассматривал географическую оболочку как взаимосвязанную систему со своими специфическими закономерностями развития и считал необходимым изучать отдельные ее компоненты (чем и занимались конкретные географические науки) не обособленно, а во взаимной связи.

Географическая оболочка имеет сложную структуру и представляет собой систему природных комплексов разного размера. Наиболее крупные компоненты географической оболочки – географические пояса, охватывающие Землю в широтном направлении. Деление на географические пояса осуществляется по температурному критерию. Каждый географический пояс имеет свой специфический ряд широтных, долготных и высотных зон. Географическую оболочку делят на следующие географические пояса: экваториальный и по два (один в северном и один в южном полушариях) субэкваториальных, тропических, субтропических, умеренных, а также субарктический и субантарктический, а также арктический и антарктический.

Внутри поясов по соотношению температур и влажности выделяют природные зоны – тундры, лесотундры, леса, лесостепи, степи, полупустыни, пустыни.

Зональность по широтам присуща и Мировому океану – с увеличением широты меняются характеристики воды (температура, плотность, соленость), состав планктона, растительности, животных. Зональность по высоте характерна для гор (зона лесов лежит ниже, зона альпийских лугов – выше).

Возникновение и развитие жизни на Земле. Концепции происхождения жизни

Введение

Вопрос о том, когда на Земле появилась жизнь, всегда волновал не только учёных, но и всех людей. Ответы на него содержатся в священных писаниях практически всех религий. Хотя точного научного ответа на него до сих пор нет, некоторые факты позволяют высказать более или менее обоснованные гипотезы. В Гренландии исследователями был найден образец горной породы с крошечными вкраплениями углерода. Возраст образца более 3,8 млрд. лет. Источником углерода, скорее всего, было какое-то органическое вещество - за такое время оно полностью утратило свою структуру. Учёные полагают, что этот комочек углерода может быть самым древним следом жизни на Земле.

Согласно современным представлениям, жизнь - это одна из форм существования материи, закономерно возникающая при определённых условиях в процессе её развития. Однако такая концепция появилась в ожесточённой многовековой борьбе материализма с различными идеалистическими течениями. Суть различных представлений о происхождении жизни можно выразить в трёх главных концепциях. Одна из них - идеалистические религиозные представления о сотворении всего живого из неживого Творцом, другая - абиогенез Абиогенез - образование органических соединений, распространённых в живой природе, вне организма без участия ферментов; возникновение живого из неживого. и третья - биогенез Биогенез - образование органических соединений живыми организмами; эмпирическое обобщение, утверждающее, что всё живое происходит от живого.

История представлений о возникновении жизни на Земле

В теории абиогенеза два принципиально разных подхода: наивно-материалистические представления древних греков о самозарождении живых организмов из неживой природы и современные диалектико-материалистические представления о естественном возникновении жизни. В частности, Аристотель в принципе придерживался материалистических представлений об абиогенезе живых существ из неорганической природы. Однако его взгляды и взгляды его средневековых последователей превратились в механистические представления о самозарождении высокоразвитых органических форм (как растений, так и животных) непосредственно из неорганической материи (грязь, ил, пот и т.д.), а также о порождении одними формами других (например, гуси, овцы - из плодов деревьев).

Первый удар по представлениям о самозарождении нанесли эксперименты флорентийского естествоиспытателя Франческо Реди, который доказал невозможность самозарождения мух в мясе. Наряду с опытными открытыми сосудами с мясом он использовал контрольные, завязанные марлей и недоступные для мух. В контрольных сосудах черви (личинки мух) не могли самозарождаться. Однако эти эксперименты Франческо Реди не смогли опровергнуть представления о самозарождении, устоявшиеся веками.

Спустя несколько лет после проведённых экспериментов Франческо Реди голландский учёный Антони Левенгук открыл микроскопические существа, "самозарождение" которых можно было наблюдать в капельке чистой воды. Это открытие Антони Левенгуком микромира дало толчок развитию представлений о самозарождении, но уже на уровне микромира. Не дали окончательного ответа и эксперименты итальянского учёного Ладзаро Спалланцани, продемонстрировавшего невозможность самозарождения микроскопических живых существ в питательных жидкостях и бульонах после их кипячения в запаянных ретортах. Несогласные с выводами Ладзаро Спалланцани учёные считали, что в его экспериментах был нарушен доступ в сосуды активного начала, якобы содержащегося в воздухе и необходимого для самозарождения. Только остроумные опыты выдающегося французского учёного-микробиолога Луи Пастера смогли убедить всех скептиков и сокрушить представления о самозарождении.

Впервые определение биогенеза было выведено на основании опытов Луи Пастера. Он нагревал бульон в колбе с длинным, дважды изогнутым кончиком, в котором оседали все споры микроорганизмов, содержащиеся в воздухе, поступавшем в колбу после кипячения бульона. Такая конструкция колбы не препятствовала доступу воздуха, т.е. "активного начала". Колба оставалась стерильной месяцами, но стоило смочить бульоном изогнутое колено, как в колбе начиналось интенсивное развитие микроорганизмов. Опыты Луи Пастера сыграли важную роль в развенчании представлений о самозарождении и помогли утвердиться гипотезе биогенеза. Был сформулирован закон "Всё живое из живого", который имел большое значение для развития биологической науки и в то же время более чем на полвека исключил возможность рассмотрения абиогенного (из неорганической природы) пути возникновения живой материи. Биогенез как гипотеза о происхождении жизни не даёт материалистического ответа на вопрос об истоках появления органической материи во Вселенной. Однако она может вполне материалистически объяснить возникновение жизни на Земле путём заселения её спорами микроорганизмов и других низших форм жизни.

Гипотезы возникновения жизни на Земле

Перенесёмся на 4 миллиарда лет назад. Атмосфера не содержит свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счёт сильно различаются. Об условиях на Земле того времени могли бы свидетельствовать горные породы, но они давно разрушились в результате геологических процессов и перемещений земной коры.

Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале её эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия?

В 1924 году русским биохимиком Александром Ивановичем Опариным, а позднее, в 1929 году, Дж. Холдейном была высказана гипотеза о возникновении жизни как результате длительной эволюции углеродных соединений, которая легла в основу современных представлений. Александр Иванович Опарин исходил из того, что возникновение живых существ из неживой природы невозможно в современных условиях. Абиогенное возникновение живой материи, возможно, было только в условиях древней атмосферы. Доказать это можно логически, проанализировав историю возникновения Земли и формирования атмосферы.

Возраст Земли составляет около 5 миллиардов лет. Предполагается, что Солнце и планеты Солнечной системы возникли из облака космической пыли. За счёт движения (вращения) и сил гравитации всё новые и новые частицы увеличивали массу Земли. При этом силы гравитации возрастали, плотность Земли увеличивалась и происходило её разогревание. Как и всякое разогретое тело, Земля остывала, переходила из газообразного в жидкое состояние, а затем на её поверхности начала формироваться твёрдая корка. В результате этих процессов происходили химические реакции, тяжёлые вещества оседали к центру и образовывали ядро Земли, а более лёгкие - оболочку. За счёт сил гравитации Земля удерживала газовую оболочку. По мере её охлаждения из конденсировавшихся в верхних слоях атмосферы водяных паров образовались моря и океаны. С разогретой поверхности Земли, горячих морей и океанов интенсивно испарялась вода, которая, конденсируясь в верхних слоях атмосферы, опять возвращалась в виде обильных ливней. Всё это сопровождалось грозами. Частые и мощные электрические разряды - один из источников энергии, который мог использоваться для абиогенного синтеза органических соединений. Для таких же целей источником энергии могли служить жёсткое ультрафиолетовое излучение (из-за отсутствия в атмосфере Земли кислорода, а значит, и озонового экрана), радиация высоких энергий и тепловая энергия земных недр.

Большинство исследователей сходятся на том, что в процессе образования атмосферы участвовали реакции, сформировавшие многочисленные газообразные соединения. Основными из них являются гидриды (метан, аммиак, вода газообразная), а также водород и некоторые другие газы, но при полном отсутствии газообразного кислорода.

Согласно одной из гипотез жизнь началась в кусочке льда. Хотя многие учёные полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима. При низкой температуре все химические соединения более стабильны и поэтому могут накапливаться в больших количествах, чем при высокой температуре. Занесенные из космоса осколки метеоритов, выбросы из гидротермальных источников и химические реакции, происходящие при электрических разрядах в атмосфере, были источниками аммиака и таких органических соединений, как формальдегид и цианид. Попадая в воду Мирового океана, они замерзали вместе с ней. В ледяной толще молекулы органических веществ тесно сближались и вступали во взаимодействия, которые приводили к образованию глицина и других аминокислот. Океан был покрыт льдом, который защищал вновь образовавшиеся соединения от разрушения под действием ультрафиолетового излучения. Этот ледяной мир мог растаять, например, при падении на планету огромного метеорита (рис. 1).

Чарлз Дарвин и его современники полагали, что жизнь могла возникнуть в водоёме. Этой точки зрения многие учёные придерживаются и в настоящее время. В замкнутом и сравнительно небольшом водоёме органические вещества, приносимые впадающими в него водами, могли накапливаться в необходимых количествах. Затем эти соединения ещё больше концентрировались на внутренних поверхностях слоистых минералов, которые могли быть катализаторами реакций. Например, две молекулы фосфатальдегида, встретившиеся на поверхности минерала, реагировали между собой с образованием фосфорилированной углеводной молекулы - возможного предшественника рибонуклеиновой кислоты (рис. 2).

А может быть, жизнь возникла в районах вулканической деятельности? Непосредственно после образования Земля представляла собой огнедышащий шар магмы. При извержениях вулканов и с газами, высвобождавшимися из расплавленной магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул. Так, молекулы угарного газа, оказавшись на поверхности минерала пирита, обладающего каталитическими свойствами, могли реагировать с соединениями, имевшими метильные группы, и образовывать уксусную кислоту, из которой затем синтезировались другие органические соединения.

Образование первичных органических соединений

Впервые получить органические молекулы - аминокислоты - в лабораторных условиях, моделирующих те, что были на первобытной Земле, удалось американскому учёному Стэнли Миллеру в 1952 году. Тогда эти эксперименты стали сенсацией, и их автор получил всемирную известность. В настоящее время он продолжает заниматься исследованиями в области предбиотической (до возникновения жизни) химии в Калифорнийском университете. Установка, на которой был осуществлён первый эксперимент, представляла собой систему колб, в одной из которых можно было получить мощный электрический разряд при напряжении 100000 В. Миллер заполнил эту колбу природными газами - метаном, водородом и аммиаком, которые присутствовали в атмосфере первобытной Земли. В колбе, расположенной ниже, было небольшое количество воды, имитирующей океан. Электрический разряд по своей силе приближался к молнии, и Миллер ожидал, что под его действием образуются химические соединения, которые, попав затем в воду, прореагируют друг с другом и образуют более сложные молекулы. Результат превзошёл все ожидания. Выключив вечером установку и вернувшись на следующее утро, Миллер обнаружил, что вода в колбе приобрела желтоватую окраску. То, что образовалось, оказалось бульоном из аминокислот - строительных блоков белков. Таким образом, этот эксперимент показал, как легко могли образоваться первичные ингредиенты живого. Всего-то и нужны были - смесь газов, маленький океан и небольшая молния. Другие учёные склонны считать, что древняя атмосфера Земли отличается от той, которую моделировал Миллер, и состояла, скорее всего, из углекислого газа и азота. Используя эту газовую смесь и экспериментальную установку Миллера, химики попытались получить органические соединения. Однако их концентрация в воде была такой ничтожной, как если бы растворили каплю пищевой краски в плавательном бассейне. Естественно, трудно себе представить, как могла возникнуть жизнь в таком разбавленном растворе. Если действительно вклад земных процессов в создание запасов первичного органического вещества был столь незначителен, то откуда оно вообще взялось? Может быть, из космоса? Астероиды, кометы, метеориты и даже частицы межпланетной пыли могли нести на себе органические соединения, включая аминокислоты. Эти внеземные объекты могли обеспечить попадание в первичный океан или небольшой водоём достаточного для зарождения жизни количества органических соединений. Последовательность и временной интервал событий, начиная от образования первичного органического вещества и кончая появлением жизни как таковой, остаётся и, наверное, навсегда останется загадкой, волнующей многих исследователей, равно как и вопрос, что собственно, считается жизнью.

Что считать жизнью?

В настоящее время существует несколько научных определений жизни, но все они не точны. Одни из них настолько широки, что под них попадают такие неживые объекты, как огонь или кристаллы минералов. Другие - слишком узки, и в соответствии с ними мулы, не дающие потомства, не признаются живыми.

Одно из наиболее удачных определяет жизнь как самоподдерживающуюся химическую систему, способную вести себя в соответствии с законами дарвиновской эволюции. Это значит, что, во-первых, группа живых особей должна производить подобных себе потомков, которые наследуют признаки родителей. Во-вторых, в поколениях потомков должны проявляться последствия мутаций - генетических изменений, которые наследуются последующими поколениями и обуславливают популяционную изменчивость. И, в-третьих, необходимо, чтобы действовала система естественного отбора, в результате которого одни особи получают преимущество перед другими и выживают в изменившихся условиях, давая потомство.

Какие же элементы системы были необходимы, чтобы у неё появились характеристики живого организма? Большое число биохимиков и молекулярных биологов считают, что необходимыми свойствами обладали молекулы РНК. Рибонуклеиновые кислоты - это особенные молекулы. Одни из них могут реплицироваться, мутировать, таким образом, передавая информацию, и, следовательно, они могли участвовать в естественном отборе. Правда, они не способны сами катализировать процесс репликации, хотя учёные надеются, что в недалёком будущем будет найден фрагмент РНК с такой функцией. Другие молекулы РНК задействованы в "считывании" генетической информации и передаче её на рибосомы, где происходит синтез белковых молекул, в котором принимают участие молекулы РНК третьего типа.

Таким образом, самая примитивная живая система могла быть представлена молекулами РНК, удваивающимися, подвергающимися мутациям и подверженными естественного отбору. В ходе эволюции на основе РНК возникли специализированные молекулы ДНК - хранители генетической информации - и не менее специализированные молекулы белка, взявшие на себя функции катализаторов синтеза всех известных в настоящее время биологических молекул.

В некий момент времени "живая система" из ДНК, РНК и белка нашла приют внутри мешочка, образованного липидной мембраной, и эта более защищённая от внешних воздействий структура послужила прототипом самых первых клеток, давших начало трём основным ветвям жизни, которые представлены в современном мире бактериями, археями и эукариотами. Что касается даты и последовательности появления таких первичных клеток, то это остаётся загадкой. Кроме того, по простым вероятностным оценкам для эволюционного перехода от органических молекул к первым организмам не хватает времени - первые простейшие организмы появились слишком внезапно.

В течение многих лет учёные полагали, что жизнь вряд ли могла возникнуть и развиваться в тот период, когда Земля постоянно подвергалась столкновениям с большими кометами и метеоритами, а завершился этот период примерно 3,8 миллиарда лет тому назад. Однако недавно в самых древних на Земле осадочных породах, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет, по крайней мере, 3,86 миллиардов лет. Значит, первые формы жизни могли возникнуть за миллионы лет до того, как прекратилась бомбардировка нашей планеты крупными космическими телами. Но тогда возможен и совсем другой сценарий (рис. 4). Органическое вещество попадало на Землю из космоса вместе с метеоритами и другими внеземными объектами, бомбардировавшими планету в течение сотен миллионов лет с момента её образования. Ныне столкновение с метеоритом - событие довольно редкое, но и сейчас из космоса вместе с межпланетным материалом на Землю продолжают поступать точно такие же соединения, как и на заре жизни.

Падавшие на Землю космические объекты могли сыграть центральную роль в возникновении жизни на нашей планете, так как, по мнению ряда исследователей, клетки, подобные бактериям, могли возникнуть на другой планете и затем уже попасть на Землю вместе с астероидами. Одно из свидетельств в пользу теории внеземного происхождения жизни было обнаружено внутри метеорита, по форме напоминающего картофелину и названного ALH84001. Первоначально этот метеорит был частичкой марсианской коры, которая затем была выброшена в космос в результате взрыва при столкновении огромного астероида с поверхностью Марса, происшедшего около 16 миллионов лет назад. А 13 тысяч лет назад после длительного путешествия в пределах Солнечной системы этот осколок марсианской породы в виде метеорита приземлился в Антарктике, где и был недавно обнаружен. При детальном исследовании метеорита внутри него были обнаружены палочковидные структуры, напоминающие по форме окаменелые бактерии, что дало повод для бурных научных споров о возможности жизни в глубине марсианской коры. Разрешить эти споры удастся только тогда, осуществится программа полёта на Марс межпланетного корабля для отбора проб марсианской коры и доставки образцов на Землю. И если учёным удастся доказать, что микроорганизмы когда-то населяли Марс, то о внеземном возникновении жизни и о возможности занесения жизни из Космоса можно будет говорить с большей долей уверенности.

Эволюция жизни на Земле

В настоящее время, да, наверное, и в будущем, наука не сможет дать ответ на вопрос, как выглядел самый первый организм, появившийся на Земле, - предок, от которого берут начало три основные ветви древа жизни. Одна из ветвей - эукариоты, клетки которых имеют оформленное ядро, содержащее генетический материал, и специализированные органеллы: митохондрии, вырабатывающие энергию, вакуоли и др. К эукариотным организмам относятся водоросли, грибы, растения, животные и человек.

Вторая ветвь - это бактерии - прокариотные (доядерные) одноклеточные организмы, не имеющие выраженного ядра и органелл. И наконец, третья ветвь - одноклеточные организмы, именуемые археями, или архебактериями, клетки которых имеют такое же строение, как и у прокариот, но совсем другую химическую структуру липидов.

Многие архебактерии способны выживать в крайне неблагоприятных экологических условиях. Некоторые из них являются термофилами и обитают только в горячих источниках с температурой 90С и даже выше, где другие организмы попросту погибли бы. Превосходно чувствуя себя в таких условиях, эти одноклеточные организмы потребляют железо и серосодержащие вещества, а также ряд химических соединений, токсичных для других форм жизни. По мнению учёных, найденные термофильные архебактерии являются крайне примитивными организмами и в эволюционном отношении - близкими родственниками самых древних форм жизни на Земле. Интересно, что современные представители всех трёх ветвей жизни, наиболее похожие на своих прародителей, и сегодня обитают в местах с высокой температурой. Исходя из этого, некоторые учёные склонны считать, что, вероятнее всего, жизнь возникла около 4 миллиардов лет тому назад на дне океана вблизи горячих источников, извергающих потоки, богатые металлами и высокоэнергетическими веществами. Взаимодействуя друг с другом и с водой стерильного тогда океана, вступая в самые разнообразные химические реакции, эти соединения дали начало принципиально новым молекулам. Так, в течение десятков миллионов лет в этой "химической кухне" готовилось самое большое блюдо - жизнь. И вот около 4,5 миллиардов лет назад на Земле появились одноклеточные организмы, одинокое существование которых продолжалось весь докембрийский период.

Всплеск эволюции, давший начало многоклеточным организмам, произошёл гораздо позже, немногим более полумиллиарда лет назад. Хотя размеры микроорганизмов столь малы, что в одной капле воды могут поместиться миллиарды, масштабы проведённой ими работы грандиозны.

Полагают, что первоначально в земной атмосфере и Мировом океане не было свободного кислорода, и в этих условиях жили и развивались лишь анаэробные микроорганизмы. Особым шагом в эволюции живого было возникновение фотосинтезирующих бактерий, которые, используя энергию света, превращали углекислый газ в углеводные соединения, служащие пищей для других микроорганизмов. Если первые фотосинтетики выделяли метан или сероводород, то появившиеся однажды мутанты начали вырабатывать в процессе фотосинтеза кислород. По мере накопления кислорода в атмосфере и водах анаэробные бактерии, для которых он губителен, заняли бескислородные ниши.

В древних ископаемых остатках, найденных в Австралии, возраст которых исчисляется 3,46 миллиардов лет, были обнаружены структуры, которые считают остатками цианобактерий - первых фотосинтезирующих микроорганизмов. О былом господстве анаэробных микроорганизмов и цианобактерий свидетельствуют строматолиты, встречающиеся в мелководных прибрежных акваториях не загрязнённых солёных водоёмов. По форме они напоминают большие валуны и представляют интересное сообщество микроорганизмов, живущее в известняковых или доломитовых породах, образовавшихся в результате их жизнедеятельности. На глубину нескольких сантиметров от поверхности строматолиты насыщены микроорганизмами: в самом верхнем слое обитают фотосинтезирующие цианобактерии, вырабатывающие кислород; глубже обнаруживаются бактерии, которые до определённой степени терпимы к кислороду и не нуждаются в свете; в нижнем слое присутствуют бактерии, которые могут жить только в отсутствии кислорода. Расположенные в разных слоях, эти микроорганизмы составляют систему, объединённую сложными взаимоотношениями между ними, в том числе пищевыми. За микробной плёнкой обнаруживается порода, образующаяся в результате взаимодействия остатков отмёрших микроорганизмов с растворённым в воде карбонатом кальция. Учёные считают, что когда на первобытной Земле ещё не было континентов, и лишь архипелаги вулканов возвышались над поверхностью океана, мелководье изобиловало строматолитами.

В результате жизнедеятельности фотосинтезирующих цианобактерий в океане появился кислород, а примерно через 1 миллиард лет после этого он начал накапливаться в атмосфере. Сначала образовавшийся кислород взаимодействовал с растворённым в воде железом, что привело к появлению окислов железа, которые постепенно осаждались на дне. Так в течение миллионов лет с участием микроорганизмов возникли огромные залежи железной руды, из которой сегодня выплавляется сталь.

Затем, когда основное количество железа в океанах подверглось окислению и уже не могло связывать кислород, он в газообразном виде ушёл в атмосферу.

После того как фотосинтезирующиеся цианобактерии создали из углекислого газа определённый запас богатого энергией органического вещества и обогатили земную атмосферу кислородом, возникли новые бактерии - аэробы, которые могут существовать только в присутствии кислорода. Кислород им необходим для окисления (сжигания) органических соединений, а значительная часть получаемой энергии превращается в биологически доступную форму - аденозинтрифосфат (АТФ). Этот процесс энергетически очень выгоден: анаэробные бактерии при разложении одной молекулы глюкозы получают только две молекулы АТФ, а аэробные бактерии, использующие кислород, - 36 молекул АТФ.

С появлением достаточного для аэробног образа жизни количества кислорода дебютировали и эукариотные клетки, имеющие в отличие от бактерий ядро и такие органеллы, как митохондрии, лизосомы, а у водорослей и высших растений - хлоропласты, где совершаются фотосинтетические реакции. По поводу возникновения и развития эукариот существует интересная и вполне обоснованная гипотеза, высказанная почти 30 лет назад американским исследователем Л. Маргулисом. Согласно этой гипотезе митохондрии, выполняющие функции фабрик энергии в эукариотной клетке, - это аэробные бактерии, а хлоропласты растительных клеток, в которых происходит фотосинтез, - цианобактерии, поглощённые, вероятно, около двух миллиардов лет назад примитивными амёбами. В результате взаимовыгодных взаимодействий поглощённые бактерии стали внутренними симбионитами и образовали с поглотившей их клеткой устойчивую систему - эукариотную клетку.

Исследования ископаемых останков организмов в породах разного геологического возраста показали, что на протяжении сотен миллионов лет после возникновения эукариотные формы жизни были представлены микроскопическими шаровидными одноклеточными организмами, такими как дрожжи, а их эволюционное развитие протекало очень медленными темпами. Но немногим более 1 миллиарда лет назад возникло множество новых видов эукариот, что обозначило резкий скачок в эволюции жизни.

Прежде всего это было связано с появлением полового размножения. И если бактерии и одноклеточные эукариоты размножались, производя генетически идентичные копии самих себя и не нуждаясь в половом партнёре, то половое размножение у более высокоорганизованных эукариотных организмов происходит следующим образом. Две гаплоидные, имеющие одиарный набор хромосом половые клетки родителей, сливаясь, образуют зиготу, имеющую двойной набор хромосом с генами обоих партнёров, что создаёт возможности для новых генных комбинаций. Возникновение полового размножения привело к появлению новых организмов, которые и вышли на арену эволюции.

Три четверти всего времени существования жизни на Земле она была представлена исключительно микроорганизмами, пока не произошёл качественный скачок эволюции, приведший к появлению высокоорганизованных организмов, включая человека. Проследим основные вехи в истории жизни на Земле.

Четыре миллиарда лет назад загадочным образом возникла РНК. Возможно, что она образовалась из появившихся на первобытной Земле более простых органических молекул. Полагают, что древние молекулы РНК имели функции носителей генетической информации и белков-катализаторов, они были способны к репликации (самоудвоению), мутировали и подвергались естественному отбору. В современных клетках РНК не имеют или не проявляют этих свойств, но играют очень важную роль посредника в передаче генетической информации с ДНК на рибосомы, в которых происходит синтез белков.

3,9 миллиарда лет назад появились одноклеточные организмы, которые, вероятно, выглядели, как современные бактерии, и архебактерии. Как древние, так и современные прокариотные клетки устроены относительно просто: они не имеют оформленног ядра и специализированных органелл, в их желеподобной цитоплазме располагаются макромолекулы ДНК - носители генетической информации, и рибосомы, на которых происходит синтез белка, а энергия производится на цитоплазматической мембране, окружающей клетку.

Два миллиарда лет назад появились сложноорганизованные эукариотные клетки, когда одноклеточные организмы усложнили своё строение за счёт поглощения других прокариотных клеток. Одно из них - аэробные бактерии - превратились в митохондрии - энергетические станции кислородного дыхания. Другие - фотосинтетические бактерии - начали осуществлять фотосинтез внутри клетки-хозяина и стали хлоропластами в клетках водорослей и растений. Эукариотные клетки, имеющие эти органеллы и чётко обособленное ядро, включающее генетический материал, составляют все современные сложные формы жизни - от плесневых грибов до человека.

1,2 миллиарда лет назад произошёл взрыв эволюции, обусловленный появлением полового размножения и ознаменовавшийся появлением высокоорганизованных форм жизни - растений и животных.

Эволюционная теория Дарвина

Чарльз Дарвин в своем основном труде "Происхождение видов путем естественного отбора" (1859), обобщив эмпирический материал современной ему биологии и селекционной практики, использовав результаты собственных наблюдений во время путешествий, кругосветного плавания на корабле "Бигль", раскрыл основные факторы эволюции органического мира. В книге "Изменение домашних животных и культурных растений" (т. 1-2, 1868) он изложил дополнительный фактический материал к основному труду. В книге "Происхождение человека и половой отбор" (1871) выдвинул гипотезу происхождения человека от обезьяноподобного предка.

Основные положения

1. Все виды живых существ, населяющих Землю, никогда не были кем-то созданы.

2. Возникнув естественным путем, органические формы медленно и постепенно преобразовывались и совершенствовались в соответствии с окружающими условиями.

3. В основе преобразования видов в природе лежат такие свойства организмов, как изменчивость и наследственность, а также постоянно происходящий в природе естественный отбор. Естественный отбор осуществляется через сложное взаимодействие организмов друг с другом и с факторами неживой природы; эти взаимоотношения Дарвин назвал борьбой за существование.

4. Результатом эволюции является приспособленность организмов к условиям их обитания и многообразие видов в природе.

Предпосылки и движущие силы эволюции

В эволюционной теории Дарвина предпосылкой эволюции является наследственная изменчивость, а движущими силами эволюции – борьба за существование и естественный отбор. При создании эволюционной теории Ч. Дарвин многократно обращается к результатам селекционной практики. Он пытается выяснить происхождение пород домашних животных и сортов растений, вскрыть причины многообразия пород и сортов и выявить методы, с помощью которых они были получены. Дарвин исходил из того, что культурные растения и домашние животные по ряду признаков сходны с определенными дикими видами, а это невозможно объяснить с позиции теории творения. Отсюда вытекала гипотеза, согласно которой культурные формы произошли от диких видов. С другой стороны, введенные в культуру растения и прирученные животные не остались неизменными: человек не только выбрал из дикой флоры и фауны интересующие его виды, но и существенно изменил их в нужном направлении, создав при этом из немногих диких видов большое количество сортов растений и пород животных. Дарвин показал, что основой многообразия сортов и пород является изменчивость – процесс возникновения отличий у потомков по сравнению с предками, которые обусловливают многообразие особей в пределах сорта, породы. Дарвин считает, что причинами изменчивости являются воздействие на организмы факторов внешней среды (прямое и косвенное, через «воспроизводительную систему»), а также природа самих организмов (так как каждый из них специфически реагирует на воздействие внешней среды). Определив для себя отношение к вопросу о причинах измеичивости, Дарвин анализирует формы изменчивости и выделяет среди них три: определенную, неопределенную и коррелятивную.

Определенная, или групповая, изменчивость – это изменчивость, которая возникает под влиянием какого-либо фактора среды, действующего одинаково на все особи сорта или породы и изменяющегося в определенном направлении.

Н а п р и м е р: примерами такой изменчивости могут служить увеличение массы тела у всех особей животных при хорошем кормлении изменение волосяного покрова под влиянием климата и т. д. Определенная изменчивость является массовой, охватывает все поколение и выражается у каждой особи сходным образом. Она ненаследственна, т.е. у потомков измененной группы при помещении их в другие условия среды приобретенные родителями признаки не наследуются.

Неопределенная, или индивидуальная, изменчивость проявляется специфично у каждой особи, т. е, единична, индивидуальна по своему характеру. При неопределенной изменчивости появляются разнообразные отличия у особей одного и того же сорта, породы, которыми в сходных условиях одна особь отличается от других. Данная форма изменчивости неопределенна, т. е. признак в одних и тех же условиях может изменяться в разных направлениях.

Н а п р и м е р: у одного сорта растений появляются экземпляры с разной окраской цветков, разной интенсивностью окраски лепестков и т. п. Причина такого явления Дарвину была неизвестна. Неопределенная, или индивидуальная, изменчивость имеет наследственный характер, т. е. устойчиво передается потомству. В этом заключается ее важное значение для эволюции.

При коррелятивной, или соотносительной изменчивости изменение в каком-либо одном органе является причиной изменений в других органах.

Н а п р и м е р: у собак с плохо развитым шерстным покровом обычно недоразвиты зубы, голуби с оперенными ногами имеют перепонки между пальцами, у голубей с длинным клювом обычно длинные ноги, белые кошки с голубыми глазами обычно глухи и т. д. Из факторов коррелятивной изменчивости Дарвин делает важный вывод: человек, отбирая какую-либо особенность строения, почти «наверное будет неумышленно изменять и другие части организма на основании таинственных законов корреляции».

Определив форму изменчивости, Дарвин приходит к выводу, что для эволюционного процесса важны лишь наследуемые изменения, так как только они могут накапливаться из поколения в поколение. Согласно Дарвину, основные факторы эволюции культурных форм – это наследственная изменчивость и отбор, производимый человеком (такой отбор Дарвин назвал искусственным).

Движущие силы эволюции

Борьба за существование – отношение организмов друг с другом и факторами внешней среды.

Каковы же движущие силы эволюции видов в природе? Объяснение исторической изменяемости видов Дарвин считал возможным только через раскрытие причин приспособляемости к определенным условиям. Дарвин пришел к выводу, что приспособленность естественных видов, так же как и культурных форм, – результат отбора, но он производился не человеком, а условиями среды.

П р и ч и н ы: к факторам, ограничивающим численность видов (это значит, вызывающим борьбу за существование), Дарвин относит количество пищи, наличие хищников, различные заболевания и неблагоприятные климатические условия. Эти факторы могут влиять на численность видов непосредственно и косвенно, через цель сложных взаимоотношений. Очень большую роль в ограничении численности видов играют взаимные противоречия между организмами. Например, проросшие семена погибают чаще всею оттого, что проросли на почве, уже густо заросшей другими растениями. Эти противоречия принимают особенно острый характер в тех случаях, когда вопрос идет о взаимоотношениях между организмами, обладающими сходными потребностями и близкой организацией. Поэтому борьба за существование между видами одного рода жестче, чем между видами разных родов. Еще напряженнее противоречия между особями одного и того же вида (внутривидовая борьба).

В возникновения борьбы за существование, кроме перенаселения, Дарвин видел и другие причины. Самой общей ее причиной следует считать тот факт, что любой организм только относительно приспособлен к окружающей его среде, которая так или иначе не вполне соответствует его требованиям. Объясняется это тем, что физико-химические и тем более биотические условия среды всегда колеблются или изменяются в каком-либо определенном направлении. Это колебания температуры, количества влаги, солнечного света, состава и концентрации соленого раствора в водоеме, колебания количества пищи, численности и активности врагов, скорости размножения паразитов и т. д.

Естественным результатом противоречий между организмами и внешней средой является истребление части особей видов. Если часть особей каждого вида погибает в борьбе за существование, то остальные оказываются способными преодолеть неблагоприятные условия.

Естественный отбор результат борьбы за существование. Приводит к усиленному размножению одних и устранению от размножения или гибели других особей, отбирая наиболее приспособленные особи к данным условиям существования.

Под ним не следует понимать какой-то выбор, так как здесь мы имеем лишь естественное следствие гибели менее приспособленных. Естественный отбор реализуется через действие естественных факторов среды (температура, влажность, свет, паразиты, конкуренты, враги, трудности добывания пищи и т. п.). Естественный отбор действует через сохранение и накопление мелких наследственных изменений.

Отбор происходит непрерывно на протяжения бесконечного ряда сшедующих друг за другом поколений и сохраняет главным образом те формы, которые в большей мере соответствуют данным условиям. Естественный отбор и элиминация части особой вида неразрывно связаны между собой и являются необходимым условием эволюции видов в природе.

Схема действия естественного отбора в системе вида, по Дарвину, сводится к следующему:

1. Изменчивость свойственна любой группе животных и растений, и организмы отличаются друг от друга во многих различных отношениях.

2. Число организмов каждого вида, рождающихся на свет, больше того числа, которое может найти пропитание и выжить. Тем не менее, поскольку численность каждого вида в естественных условиях постоянна, следует предполагать, что большая часть потомства гибнет. Если бы все потомки какого-либо вида выживали и размножались, то весьма скоро они вытеснили бы все другие виды на земном шаре.

3. Поскольку рождается больше особей, чем может выжить, происходит борьба за существование, конкуренция за пищу и место обитания. Это может быть активная борьба не на жизнь, а на смерть или менее явная; но не менее действенная конкуренция, как, например, при переживании растениями засухи или холода.

4. Среди множества изменений, наблюдающихся у живых существ, одни облегчают выживание в борьбе за существование, другие же приводят к тому, что их обладатели гибнут. Концепция «выживания наиболее приспособленных» представляет собой ядро теории естественного отбора.

5. Выживающие особи дают начало следующему поколению, и таким образом «удачные» изменения передаются последующим поколениям. В результате каждое следующее поколение оказывается все более приспособленным к среде обитания; по мере изменения среды возникают дальнейшие приспособления. Если естественный отбор действует на протяжении многих лет, то последние отпрыски могут оказаться настолько несхожими со своими предками, что их можно будет выделить в самостоятельный вид.

Основные результаты эволюции (по Ч. Дарвину)

Главным результатом эволюции является совершенствование приспособленности организмов к условиям обитания, что влечет за собой совершенствование их организации. В результате действия естественного отбора сохраняются особи с полезными для их процветания признаками. Дарвин приводит множество доказательств повышения приспособленности организмов, обусловленной естественным отбором. Это, например, широкое распространение среди животных покровной окраски (под цвет местности, в которой обитают животные, или под цвет отдельных предметов. Многие животные, имеющие специальные защитные приспособления от поедания их другими животными, имеют, кроме того, предупреждающую окраску (например, ядовитые или несъедобные животные). У некоторых животных распространена угрожающая окраска в виде ярких отпугивающих пятен. Многие животные, не имеющие специальных средств защиты, по форме тела и окраске подражают защищенным (мимикрия). У многих из животных имеются иглы, колючки, хитиновый покров, панцирь, раковина, чешуя и т. п. Все эти приспособления могли появиться лишь в результате естественного отбора, обеспечивая существование вида в определенных условиях. Среди растений широко распространены самые разнообразные приспособления к перекрестному опылению, распространению плодов и семян. У животных большую роль в качестве приспособлений играют различного рода инстинкты (инстинкт заботы о потомстве, инстинкты, связанные с добыванием пищи, и т. д.).

Вместе с тем Дарвин отмечает, что приспособленность организмов к среде обитания (их целесообразность), наряду с совершенством, носит относительный характер. При резком изменении условий полезные признаки могут оказаться бесполезными или даже вредными. Например, у водных растений, поглощающих воду и растворенные в ней вещества, всей поверхностью тела, слабо развита корневая система, но хорошо развиты поверхность побега и воздухоносная ткань – аэренхима, образованная системой межклетников, пронизывающих все тело растения. Это увеличивает поверхность соприкосновения с окружающей средой, обеспечивая лучший газообмен, и позволяет растениям полнее использовать свет и поглощать углекислый газ. Но при пересыхании водоема такие растения очень быстро погибнут. Все их приспособительные признаки, обеспечивающие их процветание в водной среде, оказываются бесполезными вне ее.

Другой важный результат эволюции – нарастание многообразия видов естественных групп, т. е. систематическая дифференцировка видов. Общее нарастание многообразия органических форм весьма усложняет те взаимоотношения, которые возникают между организмами в природе. Поэтому в ходе исторического развития наибольшее преимущество получают, как правило, наиболее высокоорганизованные формы. Тем самым осуществляется поступательное развитие органического мира на Земле от низших к высшим. Вместе с тем, констатируя факт прогрессивной эволюции, Дарвин не отрицает морфофизиологического регресса (т. е. эволюции форм, приспособления которых к условиям среды идут через упрощение организации), а также такого направления эволюции, которое не приводит ни к усложнению, ни к упрощению организации живых форм. Сочетание различных направлений эволюции приводит к одновременному существованию форм, различающихся по уровню организации.

Значение теории эволюции для развития естествознания

1) Ч. Дарвин первым вскрыл причины развития живой природа и объяснил эволюцию как самодвижение и саморазвитие, происходящее на основе чисто материальных факторов.

2) Ч. Дарвин объяснил две центральное проблемы: происхождение приспособлений и видообразование.

Искусственный отбор

Искусственный отбор – сознательная форма отбора с целью улучшения растений и животных по продуктивным и воспроизводительным функциям, устойчивости к экстремальным условиям среды, болезням.

Дарвин различает два вида искусственного отбора – методический, или сознательный, и бессознательный. Сущность методического отбора заключается в следующем. Приступая к работе, селекционер ставит перед собой определенную задачу в отношении тех признаков, которые он хочет развить у данной породы.

Прежде всего эти признаки должны быть хозяйственно ценными или удовлетворять эстетические потребности человека.

Н а п р и м е р: характер поведения животных, например драчливость у бойцовых петухов. Решая поставленную перед собой задачу, селекционер выбирает из уже имеющегося материала все то лучшее, в чем проявляются хотя бы в малой степени интересующие его признаки.

Бессознательный отбор проводится человеком без определенной, заранее поставленной задачи. Например, крестьянин, имеющий двух коров, желая использовать одну из них на мясо, зарежет ту, которая дает меньше молока; из кур он использует на мясо самых плохих несушек. В обоих случаях крестьянин, сохраняя наиболее продуктивных животных, проводит направленный отбор, хотя и не ставит перед собой цели вывести новые породы. Именно такую примитивную форму отбора Дарвин называет бессознательным отбором.

Следовательно, в учении об искусственном отборе Ч. Дарвин открыл закон, которому подчиняется процесс выведения новых пород животных и сортов растений.

Сравнение искусственного и естественного отбора:

Показатель для сравнения

Искусственный отбор

Естественный отбор

Материал для отбора

Индивидуальная наследственная изменчивость

Отбирающий фактор

Человек

Борьба за существование

Характер действия отбора

Накопление изменений в последовательном ряду поколений

Скорость действия отбора

Действует быстро

Действует медленно, постепенно

Результаты

Создавание пород и сортов

Образование видов и таксонов более высокого порядка

Современная синтетическая теория эволюции в биологии

Основанием всем системы современной эволюционной биологии выступает синтетическая теория эволюции, принципиальные положения которой были заложены работами С. С. Четверикова, Р. Фишера, С. Райта, Дж. Холдейна, Н. П. Дубинина и др.

Элементарной клеточкой синтетической теории эволюции является популяция – совокупность особей одного вида, длительно занимающая определенное пространство и воспроизводящая себя в течение большого числа поколений. Элементарной единицей наследственности выступает ген. Наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием таких эволюционных факторов, как мутационный процесс, популяционные волны, изоляция, естественный отбор.

Таким образом, в синтетической теории эволюции на первый план выступает не онтогенез – совокупность преобразований, происходящих в организме от зарождения до конца жизни, т. е. индивидуальное развитие организма, а развитие популяций.

Основные положения

1. Материалом для эволюции служат, как правило, очень мелкие, однако дискретные изменения наследственности – мутации.

2. Мутационный процесс, волны численности – фактйры-поставщики материала для отбора – носят случайный и ненаправленный характер.

3. Единственный направляющий фактор эволюции – есть естественный отбор, основанный на сохранении и накапливании случайных и мелких мутаций.

4. Наименьшая эволюционная единица – популяция, а не особь, как то допускалось, исходя из представлений о возможности «наследования приобретенных признаков». Отсюда особое внимание к изучению популяции как элементарной структурной единицы вида.

5. Эволюция носит дивергентный характер, т. е. один таксон может стать предком нескольких дочерних таксонов, но каждый вид имеет единственный предковый вид, единственную предковую популяцию.

6. Эволюция носит постепенный и длительный характер. Видообразование как этап эволюционного процесса представляет собой последовательную смену одной временной популяции чередой последующих временных популяций.

7. Вид состоит из множества соподчиненных морфологических, биохимических, экологических, генетически отличных, но репродуктивно не изолированных единиц – подвидов и популяций. Однако известно немало видов с ограниченными ареалами, в пределах которых не удается вид расчленить на самостоятельные подвиды, а реликтовые виды могут состоять из единственной популяции. Судьба таких видов, как правило, недолговечна.

8. Обмен аллелями, «поток генов» возможны лишь внутри вида. Если мутация имеет положительную селективную ценность на территории ареала вида, то она может распространиться по всем его популяциям и подвидам. Отсюда определение вида как генетически целостной и замкнутой системы.

9. Поскольку основной критерий вида – его репродуктивная изоляция, то этот критерий не применим к формам без полового процесса (огромному множеству прокариот, низшим эукариотам).

10. Макроэволюция, или эволюция на уровне выше вида, идет лишь путем микроэволюции. Согласно СТЭ не существует закономерностей макроэволюции, отличных от микроэволюционных.