Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОДЕЛИРОВАНИЕ ЭЛЕКТРОПРИВОДА В SIMULINK (MATLAB...doc
Скачиваний:
207
Добавлен:
28.08.2019
Размер:
22.93 Mб
Скачать

1.2.1.1.4Вращающаяся система координат

Вращающаяся система координат в общем случае может перемещаться относительно неподвижной с произвольной скоростью . Мгновенное положение такой системы координат относительно неподвижной определяется углом γ между вещественными осями систем координат. Положение пространственного вектора напряжения во вращающейся системе координат можно определить путем его поворота на угол γ против направления вращения. Поэтому между выражениями пространственного вектора в неподвижной и во вращающейся системах координат имеют место следующие соотношения [2]:

(1.0)

Математическая основа преобразования координат поясняется на рисунке 1.45.

В неподвижной системе координат (α, β) пространственный вектор напряжения может быть представлен в алгебраической и показательной форме .

Рисунок 1.45 – Преобразование координат

Аналогично в системе вращающихся координат (х, у) тот же самый вектор может быть представлен в виде:

. (1.0)

Из выражения (1.22) получаем уравнения перехода от неподвижной системы координат к вращающейся:

. (1.0)

Аналогично получаем уравнения перехода от вращающейся системы координат к неподвижной с учетом (1.21):

Тогда

. (1.0)

На рисунке 1.46 представлена модель преобразователя неподвижной системы координат во вращающуюся, реализованную по уравнениям (1.23). На вход модели поданы проекции пространственного вектора напряжения на оси (α, β) в виде синусоидальных напряжений частоты 314 рад/сек и текущий угол поворота координатной оси от блока Integrator. Угол , где ωk представляет частоту вращения системы координат. Частота вращения в рад/сек задаётся константой на входе интегратора. Следует заметить, что в этом случае на вход модели подаются синусоидальные функции времени с частотой 314 рад/сек в неподвижной системе координат и задаётся вращение координат с частотой 314 рад/сек. Следовательно, на выходах Ux, Uy должны получиться неподвижные векторы, характеризуемые постоянными величинами на выходах Ux и Uy. Преобразователь координат реализован в блоке Subsystem, содержание которого представлено на рисунке 1.46.

Рисунок 1.46 – Модель преобразователя из неподвижной системы координат во вращающуюся, схема Subsystem (Fig1_46)

На рисунке 1.47 представлены результаты моделирования. На экране осциллоскопа представлены синусоидальные напряжения Ua и Ub в неподвижной системе и постоянные напряжения Ux=0, Uy= –1 во вращающейся, подтверждающие предположение, сделанное выше.

Рисунок 1.47 – Результаты моделирования

Если частоту вращения координат ωk задать отличной от частоты входного напряжения, то на выходе преобразователя появляются синусоидальные напряжения разностной частоты . Следовательно, пространственный вектор вращается во вращающейся системе координат с частотой .

Аналогичная модель строится и для преобразования переменных в вращающейся системе координат в неподвижную в соответствии с уравнениями (1.24) [2].

На рисунке 1.48 представлена модель преобразователя вращающейся системы координат в неподвижную, реализованную по уравнениям (1.24). На вход модели поданы проекции пространственного вектора напряжения на вращающиеся оси (х, у) и текущий угол поворота системы координат. На выходе модели получены составляющие пространственного вектора (Ua, Ub) в неподвижной системе координат. Преобразователь координат реализован в блоке Subsystem, содержание которого представлено на рисунке 1.48.

Рисунок 1.48 –Модель преобразователя вращающихся координат в неподвижные, схема блока Subsystem (Fig1_48)

На рисунке 1.49 представлены результаты моделирования. Напряжения Ua, Ub видны на экране осциллоскопа. Следует заметить, что в этом случае на вход интегратора подаётся сигнал частоты вращения координат 314 !/с, и на выходе получаются синусоидальные напряжения частотой 50Гц.

Рисунок 1.49 – Результат моделирования процесса преобразования вращающихся координат в неподвижные