Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КОНТАКТНЫЕ ЯВЛЕНИЯ.doc
Скачиваний:
5
Добавлен:
30.08.2019
Размер:
2.84 Mб
Скачать

Контакт металла с полупроводником

Для определенности выберем полупроводник n-типа. Предположим, что работа выхода электрона из металла больше, чем его работа выхода из n-полупроводника. При контакте металла с полупроводником часть электронов будет переходить из полупроводника в металл до тех пор, пока их уровни Ферми не выровняются. Приконтактный слой n-полупроводника обеднится электронами и зарядится положительно, а металл получит отрицательный заряд. Между металлом и полупроводником образуется двойной электрический слой. Поскольку концентрация электронов проводимости в полупроводнике на 7 порядков меньше, чем в металле, то переход через контакт такого же количества электронов, как и при соприкосновении двух металлов, связан с «оголением» атомных слоев полупроводника. Таким образом, при контакте металла с полупроводником выравнивание химических п отенциалов может происходить только путем перехода на контактную поверхность металла электронов из граничного слоя полупроводника значительной толщины d (рис. 3.4) и вся контактная разность потенциалов приходится на полупроводник, а не на зазор между полупроводником и металлом. Ионизированные атомы примеси, остающиеся в этом слое, образуют неподвижный объемный положительный заряд. Так как этот слой практически лишен свободных электронов, то его называют обедненным, а контакт «металл - обедненный слой полупроводника», обладающий высоким сопротивлением, называют блокирующим (запирающим).

Замечательным свойством блокирующего контакта является резкая зависимость его сопротивления от направления внешнего электрического поля, приложенного к контакту. Эта зависимость настолько сильна, что приводит практически к односторонней (униполярной) проводимости контакта. Если вектор направлен от металла к полупроводнику (металл соединен с положительным полюсом источника тока, а полупроводник – с отрицательным), то электроны втягиваются из объема полупроводника в контактный слой, что приводит к уменьшению его толщины и увеличению проводимости. В этом направлении, называемом пропускным (прямым), электрический ток может проходить через контакт металла с полупроводником. Если вектор направлен от полупроводника к металлу, то электроны вытесняются из двойного слоя в объем полупроводника, увеличивая толщину запирающего слоя и его сопротивление. В этом направлении, называемом обратным, электрический ток не проходит через контакт. На рисунке 3 .5 приведен вид вольт-амперной характеристики (ВАХ) такого контакта. Из рисунка видно, что контакт полупроводника с металлом действительно обладает выпрямляющим действием: он пропускает ток в прямом направлении и почти не пропускает в обратном.

Отношение силы тока, текущего в прямом направлении, к силе тока, текущего в обратном направлении, отвечающее одной и той же разности потенциалов, называют коэффициентом выпрямления. Для хороших выпрямляющих контактов он достигает значения десятков и сотен тысяч.

Потенциальный барьер, возникающий в выпрямляющем контакте полупроводника с металлом, называют часто барьером Шоттки, а диоды, работающие на его основе, - диодами Шоттки.

Кроме случая, когда работа выхода электрона из металла больше работы выхода электрона из n-полупроводника, возможен случай, когда n-полупроводник имеет большую работу выхода, чем металл. При этом электроны переходят из металла в полупроводник, и удельное сопротивление контактного слоя будет меньше, чем в остальном объеме полупроводника. Контакт металла с таким полупроводником не образует запирающего слоя и не оказывает выпрямляющего действия на переменные токи.