Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статфизика для МТФ.doc
Скачиваний:
7
Добавлен:
30.08.2019
Размер:
659.46 Кб
Скачать

Статистическое обоснование второго начала термодинамики

Второй закон термодинамики связан с необратимостью реальных тепловых процессов. Энергия теплового движения молекул качественно отличается от всех других видов энергии – механической, электрической, химической и т. д. Энергия любого вида, кроме энергии теплового движения молекул, может полностью превратиться в любой другой вид энергии, в том числе и в энергию теплового движения. Последняя может испытать превращение в любой другой вид энергии лишь частично. Поэтому любой физический процесс, в котором происходит превращение какого-либо вида энергии в энергию теплового движения молекул, является необратимым процессом, то есть он не может быть осуществлен полностью в обратном направлении. Общим свойством всех необратимых процессов является то, что они протекают в термодинамически неравновесной системе и в результате этих процессов замкнутая система приближается к состоянию термодинамического равновесия.

Закон возрастания энтропии в термодинамике: эволюция термодинамической системы в равновесное состояние происходит с возрастанием энтропии S.

С т.з. статистической физики равновесному состоянию отвечает наибольшее число микросостояний которым оно реализуется.

Микроканоническое распределение Гиббса утверждает, что равновесное состояние является наиболее вероятным.

Больцман связал эти два утверждения некоторой функцией

Энтропия есть функция аддитивная:

Вероятность функция мультипликативная

На основании этого Планк нашел вид этой функции

Которая носит название формулы Больцмана.

Термодинамические потоки

Поток вектора :

,

где: - плотность потока, - вектор, численно равный величине элементарной поверхности и направленный по нормали к этой поверхности.

Если поле вектора однородно, то

Если рассматриваемая термодинамическая система находится в состоянии, близком к равновесию, то плотность потока пропорциональна градиенту соответствующей физической величины в той же точке:

где - коэффициент переноса.

Описание явлений переноса в газах

Процессы переноса в газах могут быть описаны с использованием молекулярно-кинетической теории. Будем считать, что молекулы газа совершают хаотическое тепловое движение. В этом случае можно предположить, что вероятность движения молекулы в любом направлении одинакова. Так как таких возможных направлений движения всего шесть, соответствующих движению в положительном и отрицательном направлении вдоль осей , и , то плотность потока частиц в любом из этих направлений определяется по формуле:

,

где: - средняя скорость теплового движения молекул, - концентрация молекул газа.

Рассмотрим процесс переноса некоторой физической величины через площадку . Будем считать, что величина изменяется в зависимости от координаты . В качестве переносимой величины может выступать масса, энергия, импульс.

Схема к выводу уравнения переноса

Через площадку в направлении оси будет проходить поток молекул , а в противоположном направлении соответственно поток . В случае выполнения принципа детального равновесия, плотности потоков молекул в двух противоположных направлениях должны быть одинаковыми: или . Переносимый в направлении оси поток величины отличается от потока этой величины, переносимого в обратном направлении. Это связано с тем, что в рассматриваемом газе через площадку в направлении оси будут проходить молекулы, характеризуемые величиной , а в противоположном - соответственно величиной , где - длина свободного пробега молекул газа, численно равная перемещению, которое молекула газа проходит без соударения с другими молекулами. Тогда плотность потока величины с учетом выражения (6.6) можно вычислить по формуле:

.

(6.7)

Считая длину свободного пробега малой величиной, функцию (и соответственно функцию ) можно разложить в ряд с сохранением только слагаемого первого порядка малости:

.

Тогда разность значений в формуле (6.7) принимает вид:

.

Окончательно получаем уравнение переноса для плотности потока физической величины :

,

а соответственно для потока имеем:

.

  1. Диффузия: (перенос вещества, связанный с градиентом концентрации)

.

Поток частиц :

,

называется коэффициентом диффузии:

.

  1. Теплопроводность: в качестве переносимой величины выступает энергия теплового движения молекулы газа:

,

где: - число степеней свободы молекулы, а температура считается зависящей только от координаты : . Тогда уравнение теплопроводности:

.

Поток теплоты через площадку площадью , перпендикулярную оси , соответственно запишется в виде:

.

Коэффициент теплопроводности:

.

  1. Вязкость газа связана с передачей импульса.

В качестве переносимой величины импульс молекулы при течении газа

,

где: - скорость течения газа в направлении, перпендикулярном оси , в точке с координатой : . Уравнение вязкости :

.

Поток импульса

где коэффициент вязкости

.

Термодинамические потоки, связанные с переносом вещества, энергии или импульса из одной части среды в другую, возникают в случае, если значения тех или иных физических параметров различны в различных точках среды. При наличии в среде различной концентрации какой-либо примеси возникают диффузионные потоки, в случае разной температуры - тепловые потоки, при различной скорости течения - потоки импульса, или количества движения. В первом случае говорят о явлении диффузии, во втором - о явлении теплопроводности, в третьем - о явлении вязкости.

Диффузией называется процесс самопроизвольного выравнивания концентраций веществ в смесях. Она наблюдается в различных средах, но её скорость сильно зависит от агрегатного состояния вещества. В газах это явление происходит достаточно быстро, что мы можем, в частности, наблюдать по тому, как происходит распространение запахов в воздухе. В жидкостях явление диффузии происходит значительно медленнее и проявляется, например, при растворении в них твердых тел или при взаимном смешивании различных жидкостей. Для наблюдения диффузии в твердых телах обычно требуется очень большое время.

Теплопроводность - это явление, приводящее к выравниванию температуры в различных точках среды. Интенсивность тепловых потоков при теплопроводности в твердых телах сильно зависит от свойств тела. Наибольшую теплопроводность имеют металлы, а наименьшую - различные теплоизоляционные материалы, такие как асбест, пенопласт и т.д. Достаточно большая теплопроводность металлов связана с тем, что в них перенос теплоты осуществляется не вследствие хаотического движения атомов и молекул, как, например, в газах или жидкостях, а свободными электронами, имеющими гораздо большие скорости теплового движения.

Явление вязкости или внутреннего трения наблюдается как в газах и жидкостях, так и в твердых телах. Оно приводит к возникновению силы сопротивления при движении тела в жидкости или газе, и к затуханию звуковых волн при прохождении их через различные среды. В частности, с явлением вязкого трения связан процесс затухания колебаний в механических осцилляторах.

С точки зрения молекулярно-кинетической теории основной причиной переноса в средах является тепловое хаотическое движение их микрочастиц. Находясь в постоянном хаотическом движении, молекулы газа, соударяясь между собой, передают друг другу свою кинетическую энергию. Это приводит к выравниванию температуры в различных частях газа. Аналогично при тепловом движении происходит выравнивание концентраций веществ в смеси и передача импульса между движущимися друг относительно друга слоями жидкости.

Для количественного описания термодинамического потока вводят величину , численно равную количеству физической величины, переносимой за одну секунду через выбранную поверхность. В случае диффузии поток определяет интенсивность переноса частиц примеси; при теплопроводности величина численно равна количеству теплоты, переносимой за единицу времени; для явления вязкости величина характеризует перенос импульса.

В общем случае поток определяется следующим образом:

,

где: - плотность термодинамического потока, - вектор, численно равный величине элементарной поверхности и направленный по нормали к этой поверхности. Если термодинамический поток однороден и вектор во всех точках среды одинаков и перпендикулярен поверхности, то величина потока , проходящего через плоскую площадку , определяется по формуле:

,

(6.2)

где - абсолютное значение (модуль) вектора .

Если рассматриваемая термодинамическая система находится в состоянии, близком к равновесию, то плотность термодинамического потока пропорциональна градиенту соответствующей физической величины в той же точке:

,

(6.3)

где - коэффициенты переноса, или кинетические коэффициенты.

Из выражения (6.3) следует, что плотность термодинамического потока имеет тем большую величину, чем сильнее изменяется физическая величина от точки к точке пространства. Кроме этого, знак минус в этом выражении указывает на то, что поток направлен в сторону уменьшения величины .

Величина зависит от описываемого процесса. При описании диффузии в качестве параметра выступает относительная концентрация примеси, а коэффициент переноса представляет собой коэффициент диффузии . Для случая теплопроводности вместо необходимо использовать энергию теплового движения молекулы, а коэффициент является коэффициентом теплопроводности . Параметром при описании вязкости будет импульс упорядоченного движения молекулы, а величина - это коэффициент вязкости .

В случае если величина зависит только от одной пространственной переменной (случай одномерной среды), формула (6.3) приобретает более простой вид:

(6.4)

или для потока :

.

(6.5)

При описании термодинамических потоков будем предполагать, что в среде не происходит процесса макроскопического перемешивания, и перенос осуществляется только из-за неупорядоченного движения микрочастиц среды. Однако в реальном газе и жидкости может возникнуть перемешивание, как вследствие каких-либо механических воздействий, так и при конвекции.

Явление конвекции возникает в жидкостях и газах благодаря полю силы тяжести. Оно имеют место, в частности, если нагрев жидкости происходит снизу, а её охлаждение сверху. Нижние слои при этом расширяются, и начинается подъём более нагретой жидкости. При этом перенос теплоты будет происходить за счет макроскопического движения среды. Аналогичный процесс наблюдается и при смешивании двух жидкостей, если более плотную жидкость налить сверху на менее плотную, например воду на глицерин или спирт.

Перенос при макроскопическом перемешивании происходит обычно с гораздо большей интенсивностью, чем перенос, вызванный только тепловым движением молекул. По этой причине, например, теплопередача в воздухе наблюдается гораздо более интенсивно, чем это должно быть при реализации теплопроводности только за счет теплового движения молекул. Для уменьшения конвективного теплообмена необходимо ограничить возможность возникновения в воздухе макроскопического перемешивания. Этого можно достичь путем разделения воздушной среды на большое количество микроскопических областей, например, с помощью пористой среды. Тогда конвекция внутри каждой из областей не возникает, и теплопередача будет осуществляться только благодаря теплопроводности воздуха. Именно этим объясняется плохая теплопроводность теплоизоляционных материалов, в порах которых находится воздушная среда. Для лучших теплоизоляторов их теплопроводность приближается к теплопроводности воздуха.