Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
592359_93F74_samoylov_m_v_kohno_n_p_bobrovich_v...doc
Скачиваний:
30
Добавлен:
08.09.2019
Размер:
733.18 Кб
Скачать

Процессы разделения газовых неоднородных систем

Очистка отходящих промышленных газов является одной из важных технологических задач многих производств. Различают следующие способы очистки газов:

1) осаждение под действием сил тяжести (гравитационная очистка);

2) осаждение под действием инерционных, в частности центробежных сил;

3) фильтрование;

4) мокрая очистка.

Осаждение под действием сил тяжести осуществляется в пылеосадительных камерах.

В воздушных сепараторах, работающих в замкнутом или открытом циклах с мельницами сухого помола, классификация материала происходит благодаря тому, что твердые частицы различной массы имеют различные скорости в воздухе, в поле действия центробежных сил или сил тяжести.

При очистке фильтрованием газы, содержащие взвешенные твердые частицы, проходят пористые перегородки, пропускающие газ и задерживающие на своей поверхности твердые частицы.

Для тонкой очистки газов от пыли применяют мокрую очистку – промывку газов водой или другой жидкостью. Тесное взаимодействие между жидкостью и запыленным газом осуществляется в мокрых пылеуловителях либо на поверхности жидкой пленки, стекающей по вертикальной или наклонной плоскости (пленочные или насадочные скрубберы), либо на поверхности капель (полые скрубберы) или пузырьков газа (барботажные пылеуловители).

На практике нужная степень очистки газа не всегда может быть достигнута в одном аппарате. Поэтому часто применяют двухступенчатые и многоступенчатые установки, включающие аппараты одного и того же или разных типов.

Тепловые процессы, используемые в технологии

К тепловым относятся процессы, скорость которых определяется скоростью переноса энергии в форме теплоты: нагревание, охлаждение, испарение, плавление и другие. Процессы переноса теплоты часто сопутствуют другим технологическим процессам: химического взаимодействия, разделения смесей и т.д.

По механизму переноса энергии различают три способа распространения теплоты – теплопроводность, конвективный перенос и тепловое излучение.

Теплопроводность – перенос энергии микрочастицами (молекулами, ионами, электронами) за счет их колебаний при тесном соприкосновении.

Процесс протекает по молекулярному механизму и поэтому теплопроводность зависит от внутреннего молекулярного строения рассматриваемого тела и является постоянной величиной.

Конвективный перенос теплоты – процесс переноса теплоты от стенки к движущейся относительно нее жидкости (газа) или от жидкости (газа) к стенке. Таким образом, он обусловлен массовым движением вещества и происходит одновременно путем теплопроводности и конвекции.

В зависимости от причины, вызывающей движение жидкости, различают вынужденную и естественную конвенцию. При вынужденной конвекции движение обусловлено действием внешней силы – разности давлений, создаваемой насосом, вентилятором или иным источником (в том числе и природного происхождения, например, ветром). При естественной конвекции движение возникает вследствие изменения плотности самой жидкости (газа), обусловленного термическим расширением.

Тепловое излучение – перенос энергии в форме электромагнитных колебаний, поглощаемых телом. Источниками этих колебаний являются заряженные частицы – электроны и ионы, входящие в состав излучающего вещества. При высоких температурах тел тепловое излучение становится преобладающим по сравнению с теплопроводностью и конвективным обменом.

На практике, теплота чаще всего передается одновременно двумя или даже тремя способами. Однако обычно превалирующее значение имеет какой-нибудь один способ передачи теплоты.

При любом механизме переноса теплоты (теплопроводностью, конвекцией или лучеиспусканием) количество передаваемого тепла пропорционально поверхности, разности температур и соответствующему коэффициенту теплоотдачи.

Среди тепловых процессов, встречающихся на практике, выделяют: процессы нагревания и охлаждения, выпаривания, испарения и конденсации, процессы искусственного охлаждения, кристаллизации и плавления.

Нагревание и охлаждение сред проводят в аппаратах называемых теплообменниками. По принципу действия теплообменники делятся на: рекуперативные, в которых, участвующие в процессе теплообмена, среды разделены перегородкой; регенеративные, рабочим органом которых является насадка, попеременно омываемая горячим и холодным теплоносителем; смесительные, в которых процесс теплообмена протекает при непосредственном контакте горячей и холодной сред. Наиболее распространены рекуперативные теплообменники.

Для передачи тепла при нагревании используют вещества, называемые теплоносителями.

Выбор теплоносителей зависит от технико-экономических показателей, из которых важнейшими являются интервал рабочих температур, теплофизические свойства, коррозионная активность, токсичность и стоимость. Во многих случаях оказывается экономически целесообразным использовать в качестве теплоносителей технологические материальные потоки, т.к. это обеспечивает уменьшение энергозатрат.

Наиболее распространенным теплоносителем является водяной пар.

Для нагревания до температур более 180-2000С используются высокотемпературные теплоносители: нагретая вода, расплавленные соли, ртуть и жидкие металлы, органические соединения, минеральные масла.

Во многих процессах, протекающих при высоких температурах, используется нагревание топочными газами, получаемыми в печах. Таковы, например, процессы обжига и сушки, широко распространенные в производствах строительных материалов, в химической, целлюлозно-бумажной промышленности.

Для нагревания в широком диапазоне температур применяется электрический нагрев. Электронагреватели удобны для регулирования, обеспечивают создание хороших санитарно-гигиенических условий, но относительно дороги.

В зависимости от способа преобразования электроэнергии в тепловую энергию применяют электропечи сопротивления, индукционный нагрев, нагрев токами высокой частоты и электродуговой нагрев.

Наиболее распространенным хладагентом является вода. Для экономии воды на всех предприятиях имеются системы водооборота.

Выпаривание – процесс удаления растворителя в виде пара из раствора нелетучего вещества при кипении этого раствора. Выпаривание применяется для концентрирования растворов нелетучих веществ, выделения нелетучих веществ в твердом виде, а также для получения чистого растворителя. Последняя задача решается, например, в опреснительных установках.

Чаще всего выпариванию подвергаются водные растворы, а теплоносителем служит водяной пар. Как и для всех тепловых процессов, движущей силой выпаривания является разность температур теплоносителя и кипящего раствора. Процесс выпаривания проводится в выпарных аппаратах.

Испарение – процесс удаления жидкой фазы в виде пара из различных сред, главным образом путем их нагрева, или создания иных условий для испарения.

Испарение осуществляется при проведении многих процессов. В методах искусственного охлаждения применяют испарение различных жидкостей, обладающих низкими, обычно отрицательными, температурами кипения.

Конденсация пара (газа) – осуществляют либо путем охлаждения пара (газа), либо посредством охлаждения и сжатия одновременно. Конденсацию используют при выпаривании, вакуум–сушке, для создания разрежения. Пары, подлежащие конденсации, отводят из аппарата, где они образуются, в закрытый аппарат, служащий для сбора паров-конденсатов, охлаждаемый водой или воздухом.

В конденсаторах смешения пар непосредственно соприкасается с охлаждаемой водой и полученный конденсат с ней смешивается. Так проводят конденсацию, если конденсируемые пары не представляют ценности.

В поверхностных конденсаторах тепло отнимается от конденсирующегося пара через стенку. Наиболее часто пар конденсируется на внутренних или внешних поверхностях труб, омываемых с другой стороны водой или воздухом. Конденсат отводят отдельно от хладагента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]