Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 4.doc
Скачиваний:
31
Добавлен:
18.09.2019
Размер:
1.02 Mб
Скачать

4.5. Теплопроводность. Уравнение теплопроводности

Явление теплопроводности наблюдается всегда, если в веществе имеется разность температур, обусловленная какими-либо внешними причинами. С макроскопической точки зрения явление теплопроводности заключается в переносе тепла от горячего слоя к холодному и продолжающемуся до тех пор, пока температура во всем теле не выровняется. В молекулярно-кинетической же теории процесс теплопроводности объясняется тем, что молекулы из горячего слоя, где они имеют большую среднюю кинетическую энергию, проникая в холодную область, передают при столкновениях молекулам этой области часть их кинетической энергии.

Пусть изменение температуры вещества происходит вдоль оси X, в то время как в плоскости, перпендикулярной этой оси, температура постоянна. Опытным путем Ж. Фурье установил закон, согласно которому количество тепла, переносимое за время dt через площадку dS, перпендикулярную оси X, пропорционально величине площадки, времени переноса и градиенту dT/dx температуры:

, (4.5.1)

где – коэффициент теплопроводности, который, как видно из закона Ж. Фурье, имеет в системе СИ размерность Дж/(м∙с∙K) = Вт/(м∙K), и численно равен количеству тепла, переносимого в единицу времени через единичную площадку при градиенте температуры, равном единице. Знак “минус” означает, что тепло переносится от мест более горячих к более холодным.

Закон Ж. Фурье справедлив для веществ, находящихся в любых агрегатных состояниях.

Введем в рассмотрение плотность потока тепла

, (4.5.2)

т. е. величина q равна количеству тепла, проходимого через единичную площадку в единицу времени. С учетом (4.5.2) закон Фурье примет вид

. (4.5.3)

Если нагреть некоторую часть тела, то начнется необратимый процесс теплопроводности. При этом, если зафиксировать координату x в теле, то температура в этой точке будет, очевидно, изменяться со временем, достигая, в конце концов, равновесной температуры. Поэтому температура T является не только функцией координаты x, но и времени t, т. е.

T = T(x, t). Тогда, как видно из (4.5.3), поток q будет зависеть от x и t, т. е. q = q(x, t). Процесс теплопроводности, при котором температура и поток являются функциями времени, называется нестационарным.

Выделим в теле, где происходит одномерный (вдоль оси X) нестационарный процесс теплопроводности, элементарный параллелепипед с площадью основания dS и высотой dx (рис. 61).

Р и с. 61

Количество тепла, входящее в параллелепипед за время dt через основание с координатой x,

, (4.5.4)

а уходящее через основание с координатой x+dx за то же время

. (4.5.5)

Таким образом, тепло, поступившее в параллелепипед за время dt,

. (4.5.6)

С другой стороны это тепло можно выразить через теплоемкость тела:

, (4.5.7)

где dm и dT – масса и приращение температуры вещества, заключенного в параллелепипеде, соответственно; и – удельная теплоемкость и плотность вещества.

Разложим функцию q(x+dx, t) в ряд по степеням dx в точке x:

. (4.5.8)

Из выражений (4.5.6–4.5.8) находим

. (4.5.9)

Подставляя в последнее уравнение вместо q(x, t) его выражение (4.5.3), получим

. (4.5.10)

Если коэффициент теплопроводности не зависит от x (однородное вещество), то уравнение (4.5.10) примет вид:

. (4.5.11)

где – коэффициент температуропроводности.

Уравнения (4.5.10–4.5.11) носят название дифференциальных уравнений теплопроводности Ж. Фурье. Искомой функцией в этих уравнениях является распределение температуры T(x, t) по пространству и во времени.

Коэффициент температуропроводности a является физическим параметром вещества и имеет размерность . В нестационарных тепловых процессах коэффициент a характеризует скорость изменения температуры. Если коэффициент теплопроводности характеризует способность вещества проводить теплоту, то коэффициент температуропроводности a есть мера теплоинерционных свойств вещества. В самом деле, из уравнения (4.5.11) следует, что изменение температуры в единицу времени для любой точки вещества пропорционально величине a. Поэтому при прочих одинаковых условиях быстрее увеличивается температура у того вещества, которое имеет больший коэффициент температуропроводности. Сама же величина a тем больше, чем больше тепла способно пропустить вещество в единицу времени через единичную площадку при единичном градиенте температуры (т. е. чем больше ) и чем меньше плотность и теплоемкость вещества. Из опыта известно (см. табл. 4.5.1), что газы имеют малый, а металлы большой коэффициент температуропроводности. Однако для тех и других веществ он является весьма малой величиной, что свидетельствует о медленности процесса теплопроводности.

Таблица 4.5.1