Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MDE_orgvm_v2.docx
Скачиваний:
5
Добавлен:
19.09.2019
Размер:
1.04 Mб
Скачать

Сильносвязанные многопроцессорные системы

В архитектурах многопроцессорных сильносвязанных систем можно отметить две важнейшие характеристики: симметричность (равноправность) всех процессоров системы и распределение всеми процессорами общего поля оперативной памяти.

В таких системах, как правило, число процессоров невелико (не больше 16) и управляет ими централизованная операционная система. Процессоры обмениваются информацией через общую оперативную память. При этом возникают задержки из-за межпроцессорных конфликтов. При создании больших мультипроцессорных ЭВМ (мэйнфреймов, суперЭВМ) предпринимаются огромные усилия по увеличению пропускной способности оперативной памяти (перекрестная коммутация, многоблочная и многовходовая оперативная память и т. д.). В результате аппаратные затраты возрастают чуть ли не в квадратичной зависимости, а производительность системы упорно «не желает» увеличиваться пропорционально числу процессоров.

Архитектура smp

Для простой и «дешевой» поддержки многопроцессорной организации была предложена архитектура SMP – мультипроцессирование с разделением памяти, предполагающая объединение процессоров на общей шине оперативной памяти. За аппаратную простоту реализации средств SMP приходится расплачиваться процессорным временем ожидания в очереди к шине оперативной памяти.

Пропускную способность памяти в таких системах можно значительно увеличить путём применения больших многоуровневых кэшей. При этом кэши могут содержать как разделяемые, так и частные данные. Частные данные – это данные, которые используются одним процессором, в то время как разделяемые данные используются многими процессорами, по существу обеспечивая обмен между ними. Кэширование разделяемых данных вызывает новую проблему: когерентность кэш-памяти. Эта проблема возникает из-за того, что значение элемента данных в памяти, используемое двумя разными процессорами, доступно этим процессорам только через их индивидуальные кэши.

Основное преимущество SMP – относительная простота программирования. В ситуации, когда все процессоры имеют одинаково быстрый доступ к общей памяти, вопрос о том, какой из процессоров какие вычисления будет выполнять, не столь принципиален, и значительная часть вычислительных алгоритмов, разработанных для последовательных компьютеров, может быть ускорена с помощью распараллеливающих и векторизирующих трансляторов.

Архитектура SMP стала своего рода стандартом для всех современных многопроцессорных серверов.

Слабосвязанные многопроцессорные системы

Способы построения крупномасштабных систем с распределённой памятью.

1. Многомашинные системы. В таких системах отдельные компьютеры объединяются либо с помощью сетевых средств, либо с помощью общей внешней памяти

2. Системы с массовым параллелизмом МРР (Massively Parallel Processor). Берутся серийные микропроцессоры, снабжаются каждый своей локальной памятью, соединяются посредством некоторой коммуникационной среды, например сетью.

Однако есть минус, что межпроцессорное взаимодействие в компьютерах этого класса идет намного медленнее, чем происходит локальная обработка данных самими процессорами. Именно поэтому написать эффективную программу для таких компьютеров очень сложно, а для некоторых алгоритмов иногда просто невозможно.

3. Кластерные системы. Данное направление, строго говоря, не является самостоятельным, а скорее представляет собой комбинацию из архитектур SMP и МРР. Из нескольких стандартных микропроцессоров и общей для них памяти формируется вычислительный узел (обычно по архитектуре SMP). Для достижения требуемой вычислительной мощности узлы объединяются высокоскоростными каналами.

Эффективность распараллеливания процессов во многих случаях сильно зависит от топологии соединения процессорных узлов. Идеальной является топология, в которой любой узел мог бы напрямую связаться с любым другим узлом.

Для синхронизации параллельно выполняющихся в узлах процессов необходим обмен сообщениями, которые должны доходить из любого узла системы в любой другой узел.

Время передачи информации от узла к узлу зависит от стартовой задержки и скорости передачи. Прогресс в производительности процессоров гораздо больше, чем в пропускной способности каналов связи. За время передачи процессорные узлы успевают выполнить большое количество команд. Поэтому инфраструктура каналов связи является одной из главных компонент кластерной или МРР-системы.

Благодаря маштабируемости, именно кластерные системы являются сегодня лидерами по достигнутой производительности.

62

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]