Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сапогова.docx
Скачиваний:
10
Добавлен:
24.09.2019
Размер:
239.97 Кб
Скачать

Рубидий

Руби́дий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Дмитрия Ивановича Менделеева, с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий (CAS-номер: 7440-17-7) — мягкий щелочной металл серебристо-белого цвета.

В 1861 году немецкие учёные Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них новый элемент, впоследствии названный рубидием по цвету наиболее сильных линий спектра.

Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твёрдость по Бринеллю 0,2 Мн/м² (0,02 кгс/мм²). Кристаллическая решетка Рубидия кубическая объёмно-центрированная, а=5,71 Å (при комнатной температуре). Атомный радиус 2,48 Å, радиус иона Rb+ 1,49 Å. Плотность 1,525 г/см³ (0 °C), tпл 38,9 °C, tкип 703 °C. Удельная теплоемкость 335,2 дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0·10-5 град-1 (0-38 °С), модуль упругости 2,4 Гн/м² (240 кгс/мм²), удельное объёмное электрическое сопротивление 11,29·10-6 ом·см (20 °C); рубидий парамагнитен.

Щелочной металл, крайне неустойчив на воздухе (реагирует с воздухом в присутствии следов воды с воспламенением). Образует все виды солей — большей частью легкорастворимые (хлораты и перхлораты малорастворимы). Гидроксид рубидия весьма агрессивное вещество к стеклу и другим конструкционным и контейнерным материалам, а расплавленный разрушает большинство металлов (даже золото и Платину).

Применение рубидия многообразно и, несмотря на то, что по ряду своих областей применения он уступает своими важнейшими физическими характеристиками цезию, тем не менее этот редкий щелочной металл играет важную роль в современных технологиях. Можно отметить следующие области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.

Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Важно отметить что рубидий имеет очень хорошую и благоприятную сырьевую базу, но при этом положение с обеспеченностью ресурсами гораздо более благоприятно, нежели в случае с цезием и рубидий способен занять ещё более важную роль, например, в катализе (где с успехом себя зарекомендовал).

Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а так же при стерилизации ряда важных лекарств и пищевых продуктов. Рубидий и его сплавы с цезием - это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы приобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия - это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.

В катализе рубидий используется как в органическом, так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для нефтепереработки на ряд важных продуктов. Ацетат рубидия, например, используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что в свою очередь чрезвычайно актуально в связи с подземной газификацией угля и производстве искусственного жидкого топлива для автомобилей и реактивного топлива. Ряд сплавов рубидия с теллуром обладают более высокой чувствительностью в ультрафиолетовой области спектра, чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию-133 как материал для фотопреобразователей. В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).

Гидроксид рубидия применяется для приготовления электролита для низкотемпературных ХИТ, а так же в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.

Хлорид рубидия в сплаве с хлоридом купрума находит применение для измерения высоких температур (до 400 °C).

Плазма рубидия находит применение для возбуждения лазерного излучения.

Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля.

Цезий

Це́зий — элемент главной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева Дмитрия Ивановича, с атомным номером 55. Обозначается символом Cs (лат. Caesium). Простое вещество цезий (CAS-номер: 7440-46-2) — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).

Цезий был открыт в 1860 году немецкими учёными Р. В. Бунзеном и Г. Р. Кирхгофом в водах Дюрхгеймского минерального источника в германии методом оптической спектроскопии, тем самым, став первым элементом, открытым при помощи спектрального анализа. В чистом виде цезий впервые был выделен в 1882 году шведским химиком К. Сеттербергом при электролизе расплава смеси цианида цезия (CsCN) и бария.

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs)[BF4]. Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит.

При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3[Sb2Cl9] и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2 · 12H2O.

В Российской Федерации после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала. К тому времени, когда российская промышленность смогла встать на ноги, выяснилось, что лицензию на разработку этого месторождения купила Канадская организация. В настоящее время переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:

нагревом в вакууме смеси хромата или дихромата цезия с цирконием;

разложением азида цезия в вакууме;

нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Цезий нашёл применение только в начале XX века, когда была обнаружены его минералы и разработана технология получения в чистом виде. В настоящее время цезий и его соединения используются в электронике, радио-, электро-, рентгенотехнике, химической промышленности, оптике, медицине, ядерной энергетике. В основном применяется стабильный природный цезий-133, и ограниченно — его радиоактивный изотоп цезий-137, выделяемый из суммы осколков деления урана, плутония, тория в реакторах атомных электростанций. Электролиз

Электролизом называется окислитель­но-восстановительный процесс, протекающий на электродах при пропускании через электролит электрического тока. При электролизе катод является восстановителем, так как отдает электроны, а анод - окислителем, так как при­нимает электроны от анионов.

Существует электролиз расплавов и растворов элект­ролитов. Возьмем, к примеру, электролиз расплава KCl. При пропускании через расплав электрического тока ионы K+ на катоде присо­единяют электроны и восстанавливаются атомарного на­трия, ионы хлора Сl- на аноде окисля­ются до атомарного хлора с последующим образованием молекул.

На аноде Сl- - е = 1/2Cl2

На катоде К+ + е = К

Анод является окислителем, а катод - восстано­вителем.

В случае, когда электролизу подвергается расплав с несколькими различными катионами, то в первую очередь восстанавливаются катионы ме­таллов с большим значением электродного потенциала.

Электролиз водных растворов электролитов протекает намного сложнее, чем расплавов. Дело в том, что вода, хотя и в малой степени, но диссоциирует на катионы водо­рода и гидроксид-анионы. Поэтому, в водных растворах электролитов, кроме ионов электролита, всегда будут находиться и ионы воды, которые тоже могут окисляться и восстанавливаться на электродах.

Разберем процессы, которые могут протекать на аноде. На аноде происходит окисление анионов. Анионы бывают простыми, типа С1-, и сложными, например SO42- или OH-. В пер­вую очередь будут окисляться простые анионы. Из сложных анионов легче всего окисляется гидроксид-анион OH-. При электролизе растворов солей кислородсодержащих кислот на аноде будут окисляться гидроксид-анионы и выделяться кислород.

На катоде восстанавливаются катионы. Сначала будут восстанавливаться те катионы, ко­торые сильнее притягивают к себе электроны. Способность катионов металлов к восста­новлению определяется положением металла в электрохимическом ряду напряжений.

Расположение металлов по возра­стающим значениям их электродных потенциалов назы­вается электрохимическим рядом напряжений металлов, который формируется на основе экспериментальных измерений стандартных электродных потенциалах металла. Если пластину металла, погруженную в раствор его соли с кон­центрацией ионов металла 1 моль/л соединить со стандартным водородным электродом, то электродвижущая сила такого гальванического элемента, измеренная при 25°C, и является стандартным электродным потенциалом металла.

Значения электродных потенциалов определяют по отношению к принятому за ноль потенциалу водорода. Поэтому электродные по­тенциалы имеют положительный или отрицательный знак. Чем активнее металл, тем меньшим будет его эле­ктродный потенциал.

Электрохими­ческий ряд напряжений металлов имеет следующий вид:

Li, К, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Sn, Pb, H, Cu, Hg, Ag, Pt, Au.

Левее расположенные в ряду напряжений металлы имеют меньшие электродные потенциалы, например, литий имеет наименьший электродный потенциал.

Чем левее металл в ряду стандартных потенциалов, тем труднее он восстанавливается при электролизе. Возможны несколько вариантов в зависимости от положения металла в ряду электрохимических напряжений металлов:

1. Катионы металлов с потен­циалом большим, чем у водорода (от Cu до Au), при элек­тролизе практически полностью восстанавливаются на катоде.

2. Катионы металлов от Li до Al не восстанавливаются на катоде, вместо них идет восстановление молекул воды.

3. Катионы металлов от Al до H восстанавливаются на катоде одновременно с молекула­ми воды.

Если катионов много, то при электролизе восстанавливается сначала металл с наибольшим значением стандартного потенциала, затем с меньшим и так далее.

Вещество, из которого сделан анод также оказывает влияние на ход электролиза. Аноды бывают растворимые и нерастворимые. Нерастворимые сделаны обычно из гра­фита или платины; растворимые аноды – из различных металлов.

На нерастворимом аноде в процессе электролиза окисляются анионы или молекулы воды. При электролизе водных растворов щелочей, кислородосодержащих кислот и их солей, фторидов на аноде протекает окисление воды и выделяется кислород.

Растворимый анод при электролизе сам окисляется, переходя в раствор, т. е отдает электроны в электрической цепи. Например, при электролизе водного раствора сульфата никеля с никелевым анодом никель оседает на катоде, при этом анод растворяется. C суль­фатом никеля в растворе ничего не происходит:

NiSO4 « Ni2+ + SO42-

HOH « H+ + ОН-

На катоде Ni2+ + 2е = Ni

На аноде Ni - 2е = Ni2+

 

При проведении электролиза водного раствора с использованием инертного анода могут происходить два окислительных и два восстановительных процесса: на аноде - окисление анионов и гидроксид-ионов, а на катоде - восстановление катионов и ионов водорода.

Если электролиз проводить с использованием активного ( растворимого) анода, то могут происходить следующие реакции: на аноде - окисление анионов и гидроксид-ионов, а также растворение анода. На катоде - восстановление катиона соли и ионов водорода либо восстановление катионов металла, полученных при растворении анода.

Электролиз расплавов и растворов применяется чрезвычайно широко. Это получение металлов ( как алюминий, олово, свинец, натрий, цинк, кадмий, серебро, золото) и неметаллов, нанесение металлических покрытий, получение точных копий с различных предметов ( гальванопластика), очистка металлов от при­месей.