Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сапогова.docx
Скачиваний:
10
Добавлен:
24.09.2019
Размер:
239.97 Кб
Скачать

86. Оксиды, пероксиды и надпероксиды щелочных металлов

При сжигании в атмосфере кислорода щелочных металлов образуются пероксиды M2O2. Только литий при обычных условиях сгорает в кислороде до Li2O. Начиная с калия, наряду с M2O2, образуются надпероксиды (KO2, RbO2, CsO2) и озониды (KO3, CsO3).

Щелочноземельные элементы при взаимодействии с кислородом при аналогичных условиях дают оксиды, пероксиды получаются труднее, чем для щелочных элементов. Так, пероксид бария BaO2 получают нагреванием на воздухе оксида бария при 700 ºC. Пероксиды остальных металлов этой группы получают «мокрым» способом при действии пероксида водорода на гидроксиды:

Оксиды s-элементов имеют основной характер, что подтверждается характером их взаимодействия с кислотными оксидами:

Исключение, как и следует ожидать, составляет BeO – он амфотерен:

Пероксиды проявляют окислительно-восстановительную двойственность за счет пероксид-иона :

Окислительные свойства пероксидов выражены сильнее, чем восстановительные. Пероксиды и надпероксиды, как сильные окислители, легко разлагаются разбавленными кислотами и водой:

Гидроксиды

Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:

катод:

анод:

Прежде щёлочь получали реакцией обмена:

Получаемая таким способом щёлочь была сильно загрязнена содой Na2CO3.

Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:

Гидроксиды щелочных металлов при нагревании возгоняются без разложения, за исключением гидроксида лития, который так же, как гидроксиды металлов главной подгруппы II группы, при прокаливании разлагается на оксид и воду:

Гидроксид натрия используется для изготовления мыла, синтетических моющих средств, искусственного волокна, органических соединений, например фенола.

Гидриды щелочных металлов

Среди гидридов щелочных металлов гидрид лития LiH является наиболее устойчивым. Поэтому гидрид лития очень близок к гидридам щелочноземельных металлов, которые являются устойчивыми, чем гидриды щелочных металлов. LiH получают при пропускании водорода над слабо нагретым литием, который находиться в железной лодочке. При этом образуется белая твердая, состоящая из правильных кристаллов масса с точкой плавления 680 °С.

В то время как при высокой температуре гидрид лития чрезвычайно реакционноспособен (аналогично свободным щелочным металлам), при комнатной температуре он исключительно устойчив. При обычной температуре он не реагирует с сухими газами, например с O2, Сl2 и НС1. Водой, напротив, энергично разлагается:

LiH + H2O = LiOH + H2

Выделение водорода вследствие термической диссоциации по уравнению LiH = Li + 1/2H2 начинает становиться заметным в вакууме при 450 °C.

Как впервые установили Нернст и Моерс, расплавленный гидрид лития проводит электрический ток, разлагаясь при этом на литий и водород. Последний выделяется на аноде и является, таким образом, в соединении электроотрицательной составной частью.

Другие гидриды щелочных металлов, так как и гидрид лития, получают непосредственным соединением составных частей. Но процесс получения остальных гидридов идет значительно труднее, чем для гидрида лития. Они значительно менее устойчивы, чем гидрид лития, но по поведению и по своей природе полностью соответствуют ему. По данным Ефратша их температуры диссоциации лежат намного ниже, чем температуры диссоциации гидридов щелочноземельных металлов и лития.

По-видимому, устойчивость гидридов в направлении от цезия к натрию несколько возрастает.

 Поэтому гидрид лития очень близок к гидридам щелочноземельных металлов, которые являются устойчивыми, чем гидриды щелочных металлов. LiH получают при пропускании водорода над слабо нагретым литием, который находиться в железной лодочке. При этом образуется белая твердая, состоящая из правильных кристаллов масса с точкой плавления 680 °С.

В то время как при высокой температуре гидрид лития чрезвычайно реакционноспособен (аналогично свободным щелочным металлам), при комнатной температуре он исключительно устойчив. При обычной температуре он не реагирует с сухими газами, например с O2, Сl2 и НС1. Водой, напротив, энергично разлагается:

LiH + H2O = LiOH + H2

Выделение водорода вследствие термической диссоциации по уравнению LiH = Li + 1/2H2 начинает становиться заметным в вакууме при 450 °C.

Как впервые установили Нернст и Моерс, расплавленный гидрид лития проводит электрический ток, разлагаясь при этом на литий и водород. Последний выделяется на аноде и является, таким образом, в соединении электроотрицательной составной частью.

Другие гидриды щелочных металлов, так как и гидрид лития, получают непосредственным соединением составных частей. Но процесс получения остальных гидридов идет значительно труднее, чем для гидрида лития. Они значительно менее устойчивы, чем гидрид лития, но по поведению и по своей природе полностью соответствуют ему. По данным Ефратша их температуры диссоциации лежат намного ниже, чем температуры диссоциации гидридов щелочноземельных металлов и лития.

По-видимому, устойчивость гидридов в направлении от цезия к натрию несколько возрастает.

87. Перехо́дные мета́ллы (перехо́дные элеме́нты) — элементы побочных подгрупп Периодической системы химических элементов Д. И. Менделеева, в атомах которых появляются электроны на d- и f-орбиталях. [1] В общем виде электронное строение переходных элементов можно представить следующим образом: . На ns-орбитали содержится один или два электрона, остальные валентные электроны находятся на -орбитали. Поскольку число валентных электронов заметно меньше числа орбиталей, то простые вещества, образованные переходными элементами, являются металлами.

Все переходные элементы имеют следующие общие свойства: [2]

Небольшие значения электроотрицательности.

Переменные степени окисления. Почти для всех d-элементов, в атомах которых на внешнем ns-подуровне находятся 2 валентных электрона, известна степень окисления +2.

Начиная с d-элементов III группы Периодической системы химических элементов Д. И. Менделеева, элементы в низшей степени окисления образуют соединения, которые проявляют основные свойства, в высшей — кислотные, в промежуточной — амфотерные. Например:

Формула соединения

Характер соединения

Mn(OH)2

Основание средней силы

Mn(OH)3

Слабое основание

Mn(OH)4

Амфотерный гидроксид

H2MnO4

Сильная кислота

HMnO4

Очень сильная кислота

Для всех переходных элементов характерно образование комплексных соединений.

Подгруппа меди

Подгруппа меди, или побочная подгруппа I группы Периодической системы химических элементов Д. И. Менделеева, включает в себя элементы: медь Cu, серебро Ag и золото Au.