Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vyshka шпоры.doc
Скачиваний:
7
Добавлен:
24.09.2019
Размер:
419.84 Кб
Скачать

32. Ду первого порядка. Задача и теорема Коши.

ДУ первого порядка – уравнение вида F(x,y,y`)=0 (y`=f(x,y), f(x,y)dy+(x,y)dy =0).

Задача Коши: найти решения ДУ y`=f(x,y), удовлетворяющее начальному условию y(xo)=yo, где xo, yo – данные числа. Геометрически: найти интегральную кривую, проходящую через точку (xo, yo). Теорема Коши: Если в уравнении y`=f(x,y) функция f(x,y) и ее частная производная f `y(x,y) непрерывны в некоторой замкнутой области D и точка (xo, yo)  D,то существует единственное решение y=(x), удовлетворяющее начальному условию y(xo)=yo. Общим решение ДУ называется функция y=(x,с), удовлетворяющее следующим свойствам: 1. Функция y=(x,с) является решением ДУ при любом постоянном с. 2. Для любого начального условия y(xo)=yo существует единственное значение с=со, при котором решение y=(x,со) удовлетворяет заданному начальному условию.

Частным решением называется любое решение полученное из общего при конкретном значении с.

33.

34.

35.Ду с разделяющимися переменными.

P(x)*Q(y)dy+M(x)*N(y)dx=0. Разделим обе части уравнения на произведение P(x)*N(y): . Получили уравнение с разделенными переменными. Интегрируя обе части этого уравнения получим общий интеграл уравнения .

36. Однородные диф. уравнения 1-ого порядка.

dy/dx = f (y/x) – однородное уравнение 1-го порядка

Функция n переменных z = f (x1, x2,…,xn) называется однородной функцией степени , если формальная подстановка tx1 вместо x1, tx2 вместо х2,…, txn вместо xn , где t – любое допустимое число, после преобразований приведет к тождеству

если =0, то функция называется однородной нулевой степени

37 Линейные ду первого порядка

Лин ДУ I порядка – это ур-ния вида:

А(х)y`+Bx(y)=C(x), где А не=0. Разделив это ур-ние на А(х) получим: у`+P(x)y=f(x) (1)

Будем искать решение в виде произведения 2-х ф-ций y=uv, где u=u(x), v=v(x), у`=u`v+uv` ,

в ур-ние (1) подставим у и у` и получим : u`v+v`u+P(x)uv=f(x),

u’v+u(v’+p(x)v)=f(x) (*)

Подберем фун-ию v т. о. Что бы выраж. В ()обратилось в 0 v’+p(x)v=0 => dv/dx=-p(x)v => dv=-p(x)vdx => получ ур-ние с раздел. перем. Разделим на v: dv/v=-p(x)dx

38. Однородные линейные ДУ второго порядка с постоянными коэффициентами.

Линейные ДУ второго порядка.

A(x)y'' + B(x)y' + K(x)y=ƒ(x) , где А(х) не≡ 0

A(x), B(x), K(x), ƒ(x) – непрерывны на некотором множестве, если ƒ(x)≡0, то урав-ние называется линейным однородным уравнением. Если ƒ(x)не≡0, то урав-ние называется неоднородным.

Задача Коши.

Найти решение ДУ у=φ(х) (1), удовлетв. следующим условиям:

y(x0)=y0

y'(x0)=y'0 , где x0, y0, y'0 – данные числа

Если в уравнении (1) все слагаемые не А(х),то его можно привести к следующ. виду:

y″+ P(x)y' + q(x)y=Q(x) (2)

Свойства решений линейных однородных уравнений второго порядка.

Теорема 1.Если функции y1=y1(x), y2= y2(x) являются решениями линейного однор. уравн. второго порядка y″+ P(x)y' + q(x)y=0, то функция у=С1·y1(x) +С2·y2(x) является также решением уравнения (2).

Следствие: Если функция y=y1(x) явл-ся решением урав-ния (2), то и функция у=С1·y1(x),

где С –постоянная, тоже явл-ся решением этого ур–ния.

Определение: 2 решения y1=y1(x) и y2= y2(x) уравнения (2) назыв-ся линейно независимыми если их отношение не≡const , в противоположном случае они назыв.

л инейно зависим.

Теорема 2 (об общем решении). Если y1(x), y2(x) линейно независимые решения урав-ния (2), то функция у=С1·y1(x) +С2·y2(x) явл-ся общим решением уравнения (2), С12 – произв. постоянные.

Линейные однородные ур-ния второго порядка с постоянными коэф-тами.

Это уравнения вида: y″+py'+qy=0, где p,q – действ.числа (1)

Уравнение к2+pk +q=0 называетя характеристическим уравнением. (2)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]