Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 4. Биологич. значен. воды и ее физ. св-ва...doc
Скачиваний:
168
Добавлен:
25.09.2019
Размер:
4.42 Mб
Скачать

4.3. Транспирация

Транспирация – это физиологический процесс испарения воды растениями. Основным органом транспирации является лист.

Сверху и снизу лист покрыт эпидермой, которая состоит из одного слоя тесно прилегающих одна к другой клеток. Наружные оболочки этих клеток покрыты кутикулой, которая препятствует испарению воды с внутренних тканей листа. В эпидерме расположены устьица. У деревьев устьица находятся только на нижней стороне листовой поверхности, у травянистых – на обоих. У большинства растений верхняя эпидерма имеет меньшее количество устьиц (20–100 шт. на 1 мм2 поверхности), чем нижняя (40–400 шт. на 1 мм2 поверхности). Это связано с меньшей тратой воды. Длина устьичной щели – 20–30, а ширина – 4–6 мкм. Обычно устьица занимают 1–2 % площади листа. Однако скорость диффузии водяного пара через устьица довольно большая, поэтому величина испарения с поверхности листа высокая (50–70 % по сравнению с открытым водоемом).

Принято считать, что устьица – это щель между двумя замыкающими клетками. Но кроме двух замыкающих клеток в состав устьичного аппарата входят и примыкающие к ним эпидермальные клетки; они также принимают участие в устьичных движениях (рис.4.4).

Рис. 4.4. Устьице: 1 – вид сверху; 2 – в поперечном разрезе

В замыкающих клетках имеются хлоропласты, которые отсутствуют в других клетках эпидермы. Важной особенностью строения замыкающих клеток является неравномерные утолщения и эластичность их оболочек. Внутренняя оболочка клетки, примыкающая к щели устьицы, утолщена, а наружная оболочка, противоположная щели, тонкая. По этой причине при увеличении тургора в замыкающих клетках их наружные оболочки растягиваются и выпячиваются, а толстые, направленные к щели, становятся вогнутыми. При этом устьичная щель увеличивается.

Между нижней и верхней эпидермой находится мезофилл с системой межклетников и проводящими пучками. Межклетники увеличивают внутреннюю испаряющую поверхность листа в 7–10 раз и связываются с окружающей средой через устьица.

Установлено, что растения испаряют значительную часть поглощаемой воды. В испарении принимают участие три структуры:

  1. Устьицы – поры, через которые диффундирует вода, испаряющаяся с поверхности клеток (около 90 % от всей потерянной воды при открытых устьицах).

  2. Кутикула – восковой слой, покрывающий эпидермис листьев и стеблей; через нее проходит вода, испаряющаяся с наружных оболочек клеток эпидермиса (около 10 %).

  3. Чечевички, почки – обычно их роль в испарении воды очень мала, но у листопадных деревьев после сбрасывания листьев через них теряется основная масса воды.

Следовательно, основную роль в испарении воды играют следующие виды транспирации:

– устьичная (испарение воды через устьица);

– кутикулярная (испарение воды с поверхности листа, покрытого кутикулой)

– перидермальная (через чечевички, стебель, почки).

Как правило, транспирацию подразделяют на устьичную и внеустьичную (кутикулярная, перидермальная).

Большая часть транспирационной воды испаряется с влажной поверхности клеток мезофилла в межклетники, а потом водяной пар через устьица диффундирует в окружающую среду (рис. 4.5).

Рис. 4.5. Диффузия молекул воды из межклетника листа

через открытые устьица

Поэтому, при устьичной транспирации выделяют такие фазы:

– испарение воды с поверхности влажных клеточных оболочек;

– диффузия водяного пара через устьица;

– движение водяного пара с поверхности листа.

Транспирацию можно измерить (рис. 4.6).

Рис. 4.6. Измерение интенсивности транспирации:

А – целое растение; Б – отдельный побег (стебель с листьями); и В – отдельный лист

В первом случае (А) интенсивность транспирации определяют по скорости снижения веса.

Во втором случае (Б) интенсивность транспирации определяют умножая длину пути, пройденного пузырьком воздуха в капиллярной трубке, на поперечное сечение этой трубки.

Интенсивность транспирации отдельного листа, заключенного в камеру, определяют, измеряя разность между влажностью воздуха, поступающего в камеру и выходящего из камеры. Зная скорость воздушного потока, рассчитывают количество потерянной листом воды.

Интенсивность или скорость транспирации определяется количеством граммов воды, испаренной с 1 м2 листовой поверхности за 1 час (г Н2О/м2·ч).

Редко количество потерянной воды относят не к единице поверхности, а к единице сухой массы растения. Последнее не совсем верно, поскольку при одинаковой массе органы растений могут иметь разную поверхность.

Обычно скорость транспирации колеблется в интервале от 15 до 250 г/м2·ч, а ночью снижается до 7–20 г/м2·ч. Если провести приблизительные расчеты, то можно показать, что 1 га пашни за счет только транспирации теряет 100 т воды за день.

Кутикулярная транспирация для молодых листьев составляет 1/3– 1/2 общей интенсивности испарения, у взрослых листьев в 10 раз слабее. У суккулентов (например, кактусов) кутикулярная транспирация вообще отсутствует. У сахарного тростника ее интенсивность почти равна устьичной, так как некоторые из клеток верхней эпидермы имеют тонкие оболочки. Транспирация через чечевички, стебель, почки (перидермальная) по интенсивности небольшая.

Кроме интенсивности транспирация характеризуется транспирационным коэффициентом. Транспирационный коэффициент – это количество воды, которое затрачивается для накопления одного грамма сухого вещества. Чтобы расчитать эту величину необходимо определить интенсивность транспирации и увеличение массы вещества растения и первую величину поделить на вторую. Например, транспирационный коэфициент 300, это означает, что растение должно испарить 300 г. воды, чтобы ее сухая масса увеличилась на 1г.

Величина транспирационного коэффициента варьирует у разных растений от 100 до 1 000 г Н2О/г сухого вещества (чаще 300–500). Средняя величина этого коэффициента у С3-растений – 600, С4 – 300, растений типа толстянковых – 33–240 г Н2О/г сухого вещества.

Противоположная величина коэффициенту транспирации – продуктивность транспирации, которая означает число граммов сухого вещества, запасенного в растении при потере 1 000 г воды. Величина продуктивности транспирации варьирует от 1 до 8 г сухого вещества на 1 000 г воды.

Величина коэффициента транспирации зависит от сухости воздуха, температуры, минерального питания, т. е. от тех показателей, что и сам процесс транспирации.

Для характеристики физиологической сущности транспирации пользуются параметром относительной транспирации. Относительная транспирация – это отношение интенсивности транспирации с единицы листовой поверхности к скорости транспирации с открытой водной поверхности. Относительная транспирация никогда не бывает равна 1, так как в сравнении с испарением со свободной водной поверхности транспирация испытывает ряд сопротивлений: так кутикула препятствует транспирации, белковые молекулы и ионы связывают воду (водоудерживающая способность). Отсюда видно, что транспирация – физиологический процесс.

Какую роль играет транспирация в жизни растений? Прежде всего, она выполняет роль своеобразного терморегулятора у растений: большая часть солнечной энергии, поглощаемая листьями, расходуется на преобразование воды в пар и поэтому температура листьев мало изменяется даже в очень теплые дни. Транспирация – основной двигатель водного тока по растению. У некоторых растений, например злаков, созревание семян идет при уменьшении влажности тканей. Этому способствует интенсивная транспирация. Существует определенная связь между транспирацией и газообменом листьев, зависящих от состояния устьиц.

Влияние эндо- и экзогенных факторов на транспирацию. Как отмечалось, транспирация бывает как устьичная, так и внеустьичная (кутикулярная, перидермальная). Главную роль играет устьичная.

Устьичная регуляция обусловлена поведением устьиц. Давно было отмечено, что состояние устьиц на протяжении суток меняется. У большинства растений они открываются на рассвете, максимум своего открытия достигают утром, а к полудню устьичная щель начинает уменьшаться, и закрывается она чаще всего перед заходом солнца.

Закрывание устьиц связано с отсутствием света, накоплением СО2 в процессе дыхания и фазой эндогенного ритма; затем наблюдается их открывание на рассвете, после чего происходит полное открывание в результате действия света и исчерпывания СО2 при фотосинтезе. В послеполуденные часы в результате эндогенных ритмов и снижения освещенности происходит частичное закрывание, после чего закрывание устьиц под влиянием эндогенного ритма усиливается, вследствие отсутствия света и накопления в процессе дыхания СО2 (рис. 4.7).

Рис. 4.7. Суточный ход устьичных движений (I) и поглощение воды (II):

а – закрывание устьиц; б – открывание перед рассветом; в – полное открывание днем; г – частичное закрытие устьиц в после полуденные часы; д – закрывание устьиц ночью

Суточные колебания потери воды сходны с движением устьиц. Поступление воды несколько отстает от транспирации из-за сопротивления, которое встречает вода на своем пути в растения. Вследствие этого в дневное время развивается некоторый дефицит, устраняемый ночью из-за продолжительного поступления воды.

В пасмурную погоду у растений умеренной зоны устьица открыты не так широко, как в ясную. При очень сухой погоде, открывшись утром, они быстро закрываются; вечером, когда жара спадает, они снова открываются. У суккулентов (кактусы, молочайные) устьица открываются только ночью.

Каковы механизмы движения устьиц? Устьица открываются, когда в замыкающие клетки поступает вода, что приводит к увеличению тургорного давления в этих клетках и изменению их формы. Когда вода из замыкающихся клеток уходит, тургорное давление в них уменьшается, форма клеток изменяется, и устьица закрываются.

Существует несколько механизмов, влияющих на изменение тургорного давления в замыкающих клетках. Больше всего тургор зависит от поступления ионов калия. При поступлении калия в замыкающие клетки в них уменьшается водный потенциал и вода поступает в клетки. При выходе ионов K+ происходит увеличение водного потенциала в замыкающих клетках, и вода выделяется в свободное пространство клетки. Резервуаром K+ служат примыкающие клетки эпидермы. Д ля того чтобы при поступлении ионов K+ в замыкающие клетки не изменялся мембранный потенциал, одновременно в эти клетки входят ионы Cl или выходят ионы Н+.

Яблочная кислота обеспечивает замыкающие клетки ионами Н+ для обмена на K+ и анионами малата для баланса заряда наряду с ионами СlРассмотренные процессы могут быть представлены в виде следующей схемы (рис. 4.8).

Рис. 4.8. Схема открывания устьиц с участием осмотического механизма

Около 40 % ионов K+ входят в замыкающие клетки вместе с анионами Cl. Доказательством выхода протонов из замыкающих клеток является повышение рН при поступлении в эти клетки ионов K+. Источником протонов могут служить органические кислоты, находящиеся в вакуолярном соке, поскольку при открытых устьицах их содержание увеличивается. Выход протонов приводит к подщелачиванию среды в замыкающих клетках, что вызывает гидролиз крахмала:

Реакция катализируется крахмальной фосфарилазой, чувствительной к концентрации водородных ионов. Поэтому поступление ионов калия в замыкающие клетки часто сопровождается распадом крахмала, а их выход – синтезом. Реакция обратима. Поэтому, когда образуется глюкоза -1-фосфат (осмотически активное вещество), водный потенциал уменьшается в замыкающих клетках и происходит поступление воды. В этом случае устьица открываются. В результате увеличения концентрации глюкоза-1-фосфата осмотический потенциал может увеличиваться от 10-20 до 100 бар. Эта реакция превращения крахмала известна давно, а ее связь с движением устьиц получила название осмотического механизма движения устьиц.

Реакция гидролиза крахмала может идти до образования малата:

Наибольшей чувствительностью к изменению рН в этой реакции обладает ФЕП-карбоксилаза.

Некоторые авторы выделяют гидродинамический механизм, который управляет движением устьиц. Он, возможно, работает тогда, когда тем или иным путем вызывается остановка подачи воды в лист (перерезание черешка, опускание корней в растворы, тормозящие поступление воды в корень и передвижение ее по растению и т. д.). Отмечено, что уже через несколько секунд после нарушения водного баланса листа устьичная щель увеличивается.

Наличие хлоропластов в замыкающих клетках дает возможность говорить еще об одном механизме движений устьиц – фотосинтетическом. Когда концентрация СО2 в окружающей среде падает, восстановление его идет медленно, то создается возможность направить больше АТФ для работы протонных насосов, которые обуславливают поступление K+ (см. рис. 4.8).

Доказательством того, что открытие и закрытие устьиц зависит от расходования АТФ является тот факт, что ингибиторы дыхания вызывают торможение движений устьиц.

С другой стороны, ускорение восстановления СО2 приводит к образованию в замыкающих клетках сахаров, в результате чего уменьшается водный потенциал и вода поступает в клетки и устьица открываются.

Устьица очень чутко реагируют на внешние условия и физиологические изменения в тканях листа (рис. ). В результате этого интенсивность транспирации может быстро изменяться.

Регуляции функционирования устьиц обусловлена разными механизмами. Так, отмечается тесная связь во взаимодействии осмотического и фотосинтетического механизмов, т. е. одна и та же функция – движение устьиц – осуществляется с помощью разных взаимосвязанных механизмов.

Другая физиологическая функция – поступление воды – также осуществляется с помощью различных механизмов: осмоса, набухания, электроосмоса.

В этом состоит один из интереснейших принципов организации физиологии клетки, ткани или органа вообще. Используя кибернетический термин, этот принцип следует назвать принципом надежности: когда выходит из строя один механизм, его дублирует другой, функция продолжает осуществляться. Это первая причина необходимости нескольких механизмов.

Вторая состоит в следующем: из различных механизмов с помощью их комбинаций можно построить много разных систем, а многоподобие ведет к лучшему приспособлению организма в окружающей среде.

На ширину устьичных щелей наряду с парциальным давлением СО2 в межклетниках, общим содержанием воды в тканях, ионным балансом большое влияние оказывают и фитогормоны. Гибберелловая кислота и цитокинины способствуют открыванию устьиц. АБК, наоборот, приводит к закрытию устьиц и играет роль эндогенного антитранспирантом. Антитранспирантами называются вещества, снижающие интенсивность транспирации.

Так как на растение обычно влияет не один фактор, а несколько и совпадение условий, способствующих открыванию устьиц, встречается редко, то они, как правило, открыты средне. С другой стороны, полное закрытие устьиц вызывают только очень неблагоприятные условия, которые тоже встречаются редко.

Внешние факторы также влияют на открывание устьиц из которых наиболее значимыми являются свет, температура, влажность воздуха, условия водообеспеченности. Действия эндо- и экзогенных факторов в ряде случаев взаимосвязаны.

Поскольку ширина устьичных щелей зависит от тургесцентности замыкающих клеток, то вода – главный фактор, регулирующий движение устьиц.

Свет влияет на движение устьиц через процесс фотосинтеза. Уменьшение концентрации СО2 вызывает увеличение рН внутреннего содержимого замыкающих клеток, некоторое стимулирует разрушение крахмала и накопление глюкоза-1-фосфата. Происходит поступление воды и устьица открываются.

Важным фактором является концентрация СО2. При определенной концентрации СО2 в воздухе (300 ррт) устьица в темноте закрыты, но при снижении концентрации они открываются. При этом не имеет значение с какой стороны эпидермы возникает нехватка СО2.

Температура влияет, прежде всего, на скорость открывания устьиц. При температуре ниже 5 оС устьица открываются очень медленно и не полностью, а при отрицательных температурах (0 – –5 оС) остаются закрытыми. При температурах выше оптимальных они также открываются не полностью, но у некоторых видов ширина устьичных щелей при высокой температуре (40–45 оС) может снова достигать максимальной величины. Влияние температуры на движение устьиц происходит через влияние на скорость фотосинтеза и дыхания и на соотношение этих процессов. При высокой температуре интенсивность дыхания выше интенсивности фотосинтеза, в результате в межклетниках накапливается СО2 и устьица закрываются. При температурах, оптимальных для фотосинтеза, в межклетниках мало СО2 и устьица открыты.

Малая интенсивность света, недостаток воды, высокая температура вызывают снижение интенсивности фотосинтеза и повышение интенсивности дыхания, приводят к увеличению концентрации СО2 в замыкающих клетках, что и вызывает закрывание устьиц. Высокая влажность около корней в почве, излишек калия способствует открыванию устьиц.

Внеустьичная регуляция транспирации представлена также несколькими механизмами. Первый связан с обезвоживанием клеточных стенок, с поверхности которых идет испарение. Этот механизм называют механизмом подсушивания. Когда поверхность верхних клеток мезофилла (хлоренхима) начинает подсыхать, то затрудняется движение воды, и таким образом, затрудняется и испарение. В клеточной стенке между микро- и макрофибриллами целлюлозы находятся капиллярные промежутки. Когда много воды и мениски в капиллярах выпуклые, силы поверхностного натяжения малы, то испарение идет быстро. Когда воды мало в клеточной стенке, мениски вогнуты, испарение идет медленнее.

Второй механизм связан со свойством протоплазмы изменять свою водоудерживающую способность.

На его существование указывает то обстоятельство, что при одной и той же степени открытия устьиц транспирация может довольно сильно изменяться. Так, например, показано, что коротковолновые лучи (сине- и ультрафиолетовые) немедленно увеличивают транспирацию. Это происходит за счет изменения структуры белковых глобул протоплазмы под действием этих лучей. При частичной денатурации способность белков удерживать воду ослабляется, и кутикулярная транспирация возрастает.

Во внеустьичной регуляции транспирации, возможно, участвуют эктодермы. Удлиняясь или укорачиваясь, они усиливают или уменьшают контакт клеток эпидермы с окружающей средой и тем самым могут влиять на скорость испарения воды.

Толщина кутикулы на поверхности листьев влияет на интенсивность транспирации. Она может изменяться под влиянием внешних факторов. Увеличение толщины кутикулы уменьшает интенсивность транспирации с поверхности листьев.

У некоторых растений существуют свои специфические механизмы внеустьичной регуляции транспирации. Так, например, у некоторых сортов сахарного тростника, когда транспирация превышает поступление воды, происходит свертывание листовых пластинок вдоль средней жилки в трубку и наблюдается снижение транспирации на 10–20 %.

При нехватке воды растения могут терять листья. Опять же, у сахарного тростника может остаться на побеге в условиях засухи один лист. При возобновлении дождей или полива количества листьев быстро увеличивается.

Известно, что при наступлении зимней засухи сбрасывают все листья деревья в умеренной зоне. Однако листопадные формы деревьев встречаются в тропиках и пустынях.

Таким образом, транспирация – саморегулируемый процесс, чем она и отличается от испарения – процесса физического.

Существует связь между устьичной и внеустьичной транспирацией. Как при максимально открытых устьицах наиболее эффективным является внеустьичный регулятор, так при закрытых устьицах уменьшение кутикулярной транспирации так же происходит за счет внеустьичной транспирации.

Роль регуляторных механизмов у растений разных видов неодинакова. Например, более низкая интенсивность транспирации, характерная для оливковых деревьев, связана с устьичным механизмом.

Факторы среды оказывают влияние непосредственно на интенсивность транспирации.

Главным фактором, регулирующим транспирацию, является свет. С интенсивностью солнечной радиации хорошо коррелируют температура и влажность среды. Во время максимальной освещенности наблюдается и максимальная интенсивность транспирации. Ночью транспирация в 10 раз меньше, чем днем. Солнечная радиация служит источником энергии, затрачиваемой на транспирацию.

Лист, поглощая свет, использует на фотосинтез 1–2 %, максимум 5 %, а остальная энергия тратиться на испарение воды. Это прямое действие света на транспирацию. Однако свет играет и иную роль, как мы уже отмечали, влияя на открытие и закрытие устьиц.

Как физический процесс (испарение) транспирация зависит от дефицита насыщения воздуха водяными парами, температуры, ветра, величины испаряющей поверхности и др.

Потеря воды в условиях, когда солнечная радиация отсутствует, как раз и обусловлена дефицитом насыщения воздуха водяными парами.

Интенсивность транспирации в какой-то мере зависит от наличия ветра. Сначала появление ветра приводит к увеличению транспирации. Однако прямой зависимости между скоростью ветра и величиной транспирации не наблюдается. Сильный ветер не намного увеличивает интенсивность транспирации по сравнению со слабым. Это связано с тем, что испарение происходит из межклетников, защищаемых от ветра.

Интенсивность транспирации зависит от условий минерального питания. У растений при недостатке азота, фосфора и калия интенсивность транспирации максимальна. Почти такая же интенсивность у растений, получивших калий и фосфор, но при дефиците азота.

Резко уменьшается транспирация при полных сбалансированных минеральных удобрениях. Чем лучше питание, тем ниже транспирация. Величина интенсивности транспирации может служить для диагностики обеспеченности растений минеральными элементами: увеличение транспирации говорит о нарушении минерального питания.

В соответствии с изменением солнечной радиации, температуры, влажности воздуха дневной ход интенсивности транспирации, как правило, выглядит следующим образом: слабая в утренние часы транспирация быстро увеличивается по мере восхода солнца, увеличению температуры и уменьшению влажности воздуха, достигает максимума около полдня, а затем быстро падает к заходу солнца.

Однако такой дневной ход наблюдается не всегда. В некоторых случаях, несмотря на интенсивную освещенность и высокую температуру, в полдень транспирация уменьшается, и отмечаются двухвершинные кривые. Нужно отметить, что кривые дневного хода транспирации очень разнообразны. Эту разнообразность обуславливают три фактора: внешние условия данного дня, условия предыдущих дней и наследственность. Эти факторы взаимодействуют один с другим и определяют реальную интенсивность транспирации.

Сами растения выработали в процессе эволюции различные приспособления для уменьшения транспирации: восковой налет на поверхности листьев и плодов, погружение устьиц в мезофилл, развитие волосков (опушенность), редукция листовой поверхности.

Однако сильно уменьшать транспирацию нельзя, так как она определяет подъем воды по растению, поддерживает постоянной температуру растения и т. д.

Существует определенная связь между транспирацией и газообменом листьев, зависящим от состояния устьиц. Растение должно поглощать из атмосферы большое количество СО2 и в тоже время ограничить расход воды.

Из этого противоречия природа нашла выход, создав осциллирующие механизмы, о которых мы уже упоминали.

Таким образом, водный обмен растений, определяющий поступлением и расходованием воды, связан с различными физиологическими процессами, особенно с фотосинтезом (рис. 4.9).

Взаимосвязь фотосинтеза и водного обмена растений можно представить схемой:

Рис. 4.9. Схема взаимосвязи фотосинтеза и водного обмена растений:

1 – корневое давление; 2 – активное нагнетание воды; 3 – транспирация;

4 – осмотическое поглощение воды клетками корня; 5 – передвижение воды

под действием транспирации; 6 – влияние транспирации на корневое давление;

7 – влияние транспирации на фотосинтез; 8 – фотосинтез; 9 – влияние фотосинтеза на

транспирацию; 10 – поступление ассимилятов в корень.