Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
himia.docx
Скачиваний:
21
Добавлен:
25.09.2019
Размер:
2.88 Mб
Скачать

1)Строение матричной рнк.

Зрелая мРНК состоит из нескольких участков, различающихся по функциям: «5' кэп», 5' нетранслируемая область, кодирующая (транслируемая) область, 3' нетранслируемая область и 3' полиадениновый «хвост».

5' кэп— это модифицированный гуанидиновый нуклеотид, который добавляется на 5' (передний) конец незрелой мРНК. Эта модификация очень важна для узнавания мРНК при инициации трансляции, а также для защиты от 5’нуклеаз — ферментов, разрушающих цепи нуклеиновых кислот с незащищённым 5'-концом.

Кодирующие области состоят из кодонов — следующих непосредственно друг за другом последовательностей из трёх нуклеотидов, каждая из которых соответствует в генетическом коде определённой аминокислоте или началу и концу синтеза белка. Кодирующие области начинаются со старт-кодона и заканчиваются одним из трёх стоп-кодонов. Моноцистронная и полицистронная мРНК. мРНК называют моноцистронной, если она содержит информацию, необходимую для трансляции только одного белка (один цистрон). Полицистронная мРНК кодирует несколько белков. Гены (цистроны) в такой мРНК разделены интергенными, некодирующими последовательностями. Полицистронные мРНК характерны для прокариот и вирусов, у эукариот большая часть мРНК является моноцистронной. Полицистронные мРНК встречаются у эукариот и в митохондриях.

Нетранслируемые области — участки РНК, расположенные до старт-кодона и после стоп-кодона, которые не кодируют белок. Они называются 5'-нетранслируемая область и 3'-нетранслируемая область, соответственно. Эти области транскрибируются в составе того же самого транскрипта, что и кодирующий участок. Нетранслируемые области имеют несколько функций в жизненном цикле мРНК, включая регуляцию стабильности мРНК, локализации мРНК и эффективности трансляции. Стабильность мРНК может контролироваться 5'- и/или 3'-областью из-за различной чувствительности к ферментам, которые отвечают за деградацию РНК — РНКазам и регуляторным белкам, которые убыстряют или замедляют деградацию.

3' полиадениновый хвост.Длинная последовательность адениновых оснований, которая присутствует на 3' «хвосте» мРНК эукариот, синтезируется ферментом полиаденилат-полимеразой. У высших эукариот поли-А-хвост добавляется к транскрибированной РНК, которая содержит специфическую последовательность, AAUAAA.

2. Гормоны,как производныеАмк,гормональный цикл

Гормоны животных, в-ва, вырабатываемые специализиров. клетками и железами внутр. секреции и регулирующие обмен в-в отдельных органов и всего орг-ма в целом. Для всех гормонов хар-рна большая специфичность действия и высокая биол. активность.

Гормоны – производные аминокислот в основном представлены производными аминокислотытирозина. Катехоламины (адреналин и норадреналин) – синтезируются из L-тирозина клетками адреналовой системы орг-ма, к-рая включает клетки мозгового слоя надпочечников и нервные клетки адренергической системы.

Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные)

Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированныхжирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая – нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ.

Мелатонин синт-ся нейронамиэпифиза головного мозга.

Тиреоидные гормоны. В реакции биосинтеза используются остатки L-тирозина не в свободном виде, а входящие в состав структуры специфического белка клеток щитовидной железы тиреоглобулина. Фермент тиреоид-пероксидаза с использованием пероксида водорода осуществляет несколько реакций: 1) активирует йодид-анион, окисляя его до активного йодирующего интермедиата I+; 2) окисляет остатки L-тирозина и йодирует их с образованием моно- и дийодпроизводных; 3) конъюгирует йодированные остатки L-тирозина с образованием йод-производных тиронина в составе тиреоглобулина. Затем такой белок накапливается для хранения в виде коллоида в полости фолликула. По мере необходимости йодированный белок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]