Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-91 частично.doc
Скачиваний:
8
Добавлен:
26.09.2019
Размер:
2.63 Mб
Скачать

82. Энергия и импульс фотона.

В вакууме энергия и импульс фотона зависят только от его частоты (или, что эквивалентно, от длины волны

- энергия

- импульс

83. Эффект Комптона. Корпускулярно-волновая двойственность свойвств света.

Эффект Комптона (Комптон-эффект) — явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами. При рассеянии фотона на покоящемся электроне частоты фотона и (до и после рассеяния соответственно) связаны соотношением:

где  — угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

Корпускулярно-волновая двойственность— теория в квантовой механике, гласящая, что в зависимости от системы отсчета поток электромагнитного излучения можно рассматривать и как поток частиц (корпускул), и как волну. В частности, свет — это и корпускулы (фотоны), и электромагнитные волны. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать только на основе квантовых представлений о свете, как о потоке дискретных фотонов. Однако волновой и квантовый (корпускулярный) способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами. Он представляет собой диалектическое единство этих противоположных свойств. Волновые свойства света играют определяющую роль в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить квантовые свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагиру ет только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела .

84. Корпускулярно-волновой дуализм свойств материи. Гипотеза де Бройля. Дифракция электронов. Соотношения неопределенностей. Набор одновременно измеримых величин.

Гипотеза де Бройля. Луи де Бройль высказал гипотезу о том, что установленный ранее[1] для фотонов корпускулярно-волновой дуализм присущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию и импульс, абсолютное значение которого равно , то с ней связана волна, частота которой и длина волны , где  — постоянная Планка.

Соотношения неопределенностей. Двойственная корпускулярно-волновая природа микрочастиц накладывает ограничения на точность определения физических величин, характеризующих состояние частицы. Причем эти ограничения никак не связаны с точностью измерений, достижимой в конкретном эксперименте, а имеют принципиальное значение.

Набор одновременно измеримых величин. Введенное математическое представление волновых функций позволяет описывать еще одну необычную, с точки зрения классической механики, черту в поведении квантовой системы (частицы), фиксируемую "принципом дополнительности" (ПД) Бора и "соотношением неопределенностей" Гейзенберга.

Суть последнего состоит в том, что возможные измерения разбиваются на группы совместимых величин, называемых "наборы одновременно измеримых величин" (НОИВ). По отношению к паре взаимно несовместимых измерений (в математическом слое им отвечают некоммутирующие между собой операторы, т.е. операторы, для которых несправедливо привычное правило перестановок сомножителей) "соотношение неопределенностей" Гейзенберга утверждает, что нижний предел произведения неопределенностей соответствующих значений измерений определяется постоянной Планка h (поскольку для макроскопических масштабов эта величина пренебрежимо мала, в макрофизике это не проявляется). К несовместимым, в частности, относятся координата и импульс, что приводит к невозможности описывать квантовую частицу на языке траекторий.

  "Принцип дополнительности" Бора возникает в другом контексте, чем "соотношение неопределенностей" Гейзенберга, а именно в контексте формирования модели квантовой системы. Бор вводит НОИВ как новую характеристику системы (речь идет именно о наборе, значения же этих величин характеризуют уже не систему, а состояние системы). Разные НОИВ согласно "принципу дополнительности" Бора свидетельствуют о том, что мы имеем дело с разными системами. Ситуации измерения несовместимых величин, принадлежащих разным НОИВ, при этом не рассматриваются.

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из фундаментальных законов физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае. Это подтверждается при более глубоком анализе теории: если размер и масса тела становятся макроскопическими и точность слежения за его координатой много хуже стандартного квантового предела, прогнозы квантовой и классической теорий совпадают, потому что неопределённый путь объекта становится близким к однозначной траектории.

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространенной копенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке , — оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

Случай трёхмерного пространства

В трёхмерном случае пси-функция является функцией трёх координат и в декартовой системе координат заменяется выражением

тогда уравнение Шрёдингера примет вид:

где , — постоянная Планка; — масса частицы, — потенциальная энергия в точке.

Стационарное уравнение Шрёдингера

Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда не является функцией времени, можно записать в виде:

где функция должна удовлетворять уравнению:

которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).

Выражение (2) является лишь частным решением зависящего от времени уравнения Шрёдингера (1), общее решение представляет собой линейную комбинацию всех частных решений вида (2). Зависимость функции от времени проста, но зависимость её от координаты не всегда имеет элементарный вид, так как уравнение (3) при одном выборе вида потенциальной функции совершенно отличается от того же уравнения при другом выборе этой функции. В действительности, уравнение (3) может быть решено аналитически лишь для небольшого числа частных типов функции .

Важное значение имеет интерпретация величины в уравнении (2). Она производится следующим путём: временна́я зависимость функции в уравнении (2) имеет экспоненциальный характер, причём коэффициент при в показателе экспоненты выбран так, что правая часть уравнения (3) содержит просто постоянный множитель . В левой же части уравнения (3) функция умножается на потенциальную энергию . Следовательно, из соображений размерности вытекает, что величина должна иметь размерность энергии. Единственной величиной с размерностью энергии, которая постоянна в механике, является полная (сохраняющаяся) энергия системы; таким образом, можно предполагать, что представляет собой полную энергию. Согласно физической интерпретации уравнения Шрёдингера, действительно является полной энергией частицы при движении, описываемом функцией .

Водородоподобные атомы, их энергетические уровни.

ВОДОРОДОПОДОБНЫЕ АТОМЫ: 1) ионы легких элементов, состоящие, подобно атому водорода, из ядра и одного электрона. К ним относятся Не+ , Li2+ , Be3+ и т. п., сходные с атомом водорода по спектральным характеристикам. 2) Нестабильные частицы, называемые новыми атомами. К ним относятся, во-первых, мезоатомы, состоящие из ядра атома водорода (протона) и отрицательно заряженной элементарной частицы. мюона , -мезона, К--мезона или др. Такие короткоживущие системы в редких случаях образуются при торможении указанных элементарных частиц в водородсодержащем веществе. Во-вторых, к новым атомам относятся системы, состоящие из электрона и положительно заряженной элементарной частицы. позитрона, мюона , - или К+ -мезона (соответствующие частицы наз. позитроний, мюоний, пионий, каоний). Такие системы образуются при прохождении пучков указанных элементарных частиц через вещество и могут вступать в хим. реакции, аналогичные реакциям атомарного водорода.

Постулаты Бора. Линейчатые спектры атомов.

Постулаты

Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где — натуральные числа, а — постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии , где — энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома[1]. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Линейчатые спектры.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп на фоне едва различимого непрерывного спектра пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На спектроскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, наконец при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

Квантовые числа. Спин электрона. Принцип Паули. Таблица Менделеева.

Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, радиальное (главное) ( ), орбитальное ( ) и магнитное ( ) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.

Некоторые другие квантовые числа никак не связаны с перемещением в обычном пространстве, а отражают «внутреннее» состояние частицы. К таким квантовым числам относится спин и его проекция. В ядерной физике вводится также изоспин, а в физике элементарных частиц появляется цвет, очарование, прелесть (или красота[1]) и истинность.

Спин (англ. spin — вертеть[-ся]) — собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.

Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в 1940 г. в рамках релятивистской квантовой механики: волновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.

В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения

Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен[1] вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу

Зонная теория твердого тела. Металлы, диэлектрики и полупроводники (п/п) по зонной теории. Проводимость по зонной теории.

Зонная теория твердых тел

1. Металлы, хорошо проводят электрический ток.

Диэлектрики (изоляторы) плохо проводят ток.

Электропроводность металлов 106 - 104 (Омсм)-1

Электропроводность диэлектриков менее 10-10 (Омсм)-1

Твердые тела с промежуточной электропроводностью называются полупроводниками.

2. Различие полупроводников и металлов проявляется в характере зависимости электропроводности от температуры.

С понижением температуры проводимость металлов возрастает, и для чистых металлов стремится к бесконечности при приближении к абсолютному нулю. У полупроводников, напротив, с понижением температуры проводимость убывает, а вблизи абсолютного нуля полупроводник становится изолятором.

3. Ни классическая электронная теория электропроводности, ни квантовая теория, основанная на модели свободных фермианов, не может дать ответа на вопрос, почему одни тела являются полупроводниками, а другие проводниками или диэлектриками.

4. Для ответа на вопрос необходимо методами квантовой механики рассмотреть вопрос взаимодействия валентных электронов с атомами кристаллической решетки.

5. Решить уравнение Шредингера с числом переменных порядка 1023 - это математическая задача безнадежной трудности.

Поэтому современная квантовая теория твердого тела основывается на ряде упрощений. Такой теорией является теория твердого тела. Название связано с характерной группировкой энергетических уровней электронов в кристаллах в зоны уровней.

В основе зонной теории лежат следующие предположения:

При изучении движения валентных электронов положительные ионы кристаллической решетки, ввиду их большой массы, рассматриваются как неподвижные источники поля, действующего на электроны.

Расположение положительных ионов в пространстве считается строго периодическим: они размещаются в узлах идеальной кристаллической решетки данного кристалла.

Взаимодействие электронов друг с другом заменяется некоторым эффективным силовым полем.

Задача сводится к рассмотрению движения электрона в периодическом силовом поле кристалла.

Потенциальная энергия электрона U(r) периодически изменяется.

Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.

Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов.

В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 314. На рис. 314, а самая верхняя зона, содержащая электроны, заполнена лишь частично, т. е. в ней имеются вакантные уровни. В данном случае электрон, получив сколь угодно малую энергетическую «добавку» (например, за счет теплового движения или электрического поля), сможет перейти на более высокий энергетический уровень той же зоны, т. е. стать свободным и участвовать в проводимости. Внутризонный переход вполне возможен, так как, например, при 1 К энергия теплового движения kT»10–4 эВ, т. е. гораздо больше разности энергий между соседними уровнями зоны (примерно 10–22 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.

Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочноземельных элементов, образующих II группу таблицы Менделеева (Be, Mg, Ca, Zn, ...). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочноземельных элементов обусловлены перекрытием валентной и свободной зон.

Помимо рассмотренного выше перекрытия зон возможно также перераспределение электронов между зонами, возникающими из уровней различных атомов, которое может привести к тому, что вместо двух частично заполненных зон в кристалле окажутся одна полностью заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны DЕ.

Если ширина запрещенной зоны кристалла порядка нескольких электрон-вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах (рис. 314, в). Если запрещенная зона достаточно узка (DЕ порядка 1 эВ), то переброс электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко либо путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию DЕ, и кристалл является полупроводником (рис. 314, г).

  1. Второе уравнение Максвелла в интегральной форме и дифференциальной формах. Ток смещения.

Второе уравнение Максвелла в интенральной форме

Второе уравнение Максвелла в дифференциальной форме

  1. Полная система уравнений Максвелла.

Интегральная форма

Дифференциальная форма (характеризует поле в каждой точке пространства)

  1. Электромагнитные волны. Волновое уравнение. Уравнение плоской электромагнитной волны. Шкала электромагнитных волн.

  1. Электромагнитное поле. Энергия электромагнитного поля. Вектор Умова-Поинтинга.

Электромагнитное поле представляет собой совокупность двух взаимосвязанных полей: электрического и магнитного.

  1. Интерференция света. Интерференция монохроматических волн.

  1. Способы получения интерференции. Интерферометры.

Способы

  1. Дифракция. Принцип Гюйгенса-Френеля.

  1. Прямолинейность распространения света.

Свет в однородной среде распространяется прямолинейно.

Прямолинейностью распространения света объясняется образование тени и полутени.

При малых размерах источника (источник, находится на расстоянии, по сравнению с которым размерами источника можно пренебречь) получается только тень (область пространства, в которую свет не попадает).

При больших размерах источника света (или, если источник находится близко к предмету) создаются нерезкие тени (тень и полутень).

В астрономии – объяснение затмений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]