Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТерВер.docx
Скачиваний:
6
Добавлен:
26.09.2019
Размер:
75.48 Кб
Скачать

3. Некоторые дискретные распределения

3.1 Биномиальное распределение

Биномиальным называют закон распределения дискретной случайной величины X - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события постоянна. Вероятности piвычисляют по формуле Бернулли

Для биномиального распределения: математическое ожидание M(X) = np, дисперсия D(X) = npq, мода np-q ≤ Mo ≤ np+p, коэффициент асимметрии As = (q - p)/√npq, коэффициент эксцесса Ex = (1 - 6pq)/npq В пределе при n→∞ биномиальное распределение по своим значениям приближается к нормальному с параметрами a=np и σ=√npq В пределе при n→∞ и при p→0 биномиальное распределение превращается в распределение Пуассона с параметром λ=np.

Пример 3.1

Построить ряд распределения числа попаданий мячом в корзину при трех бросках, если вероятность попадания при одном броске равна 0,6. Найти среднее число попаданий и дисперсию.

Показать решение

3.2 Геометрическое рапределение

Производится серия испытаний. Случайная величина - количество испытаний до появления первого успеха (например, бросание мяча в корзину до первого попадания). Закон распределения имеет вид:

Если количество испытаний не ограничено, т.е. если случайная величинв может принимать значения 1, 2, ..., ∞, то математическое ожидание и дисперсию геометрического распределения можно найти по формулам M(X) = 1/p, D(X) = q/p2

Пример 3.2

Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель p = 0,6 при каждом выстреле. С.в. X - число возможных выстрелов до первого попадания. а) Составить ряд распределения, найти функцию распределения, построить её график и найти все числовые характеристики. б) Найти математическое ожидание и дисперсию для случая, если стрелок намеревается произвести не более трёх выстрелов.

Показать решение

3.3 Гипергеометрическое рапределение

Имеется N объектов. Из них n объектов обладают требуемым свойством. Из общего количества отбирается m объектов. Случайная величина X - число объектов из m отобранных, обладающих требуемым свойством. Для вычисления вероятностей используются биномиальные коэффициенты (см. число сочетаний). Закон распределения имеет вид:

Пример 3.3

Срди 20 книг, стоящих на полке, 8 книг по математической статистике. Случайная величина X - число книг по математике из четырёх случайно взятых с этой полки книг. Составить ряд распределения, найти функцию распределения, построить её график и найти все числовые характеристики.

Показать решение

3.4 Распределение Пуассона

Пусть имеется некоторая последовательность событий, наступающих в случайные моменты времени (будем называть это потоком событий). Интенсивность потока (среднее число событий, появляющихся в единицу времени) равна λ. Пусть этот поток событий - простейший (пуассоновский), т.е. обладает тремя свойствами: 1) вероятность появления k событий за определённый промежуток времени зависит только от длины этого промежутка, но не от точки отсчёта, другими словами, интенсивность потока есть постоянная величина (свойство стационарности); 2) вероятность появления k событий в любом промежутке времени не зависит от того, появлялись события в прошлом или нет (свойство «отсутствия последействия»); 3) появление более одного события за малый промежуток времени практически невозможно (свойствоординарности). Вероятность того, что за промежуток времени t событие произойдёт k раз, равна

Пример 3.4

Среднее число вызовов, поступающих на АТС за 1 мин, равно двум. Найти вероятность того, что за 4 мин. поступит: а) три вызова; б)менее трёх вызовов; в)не менее трёх вызовов. Поток вызовов - простейший.

Показать решение