Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТерВер.docx
Скачиваний:
6
Добавлен:
26.09.2019
Размер:
75.48 Кб
Скачать

4. Непрерывная случайная величина, интегральная и дифференциальная функции распределения.

Непрерывной называют случайную величину, которая может принимать любые значения из некоторого заданного интервала, например, время ожидания транспорта, температура воздуха в каком-либо месяце, отклонение фактического размера детали от номинального, и т.д. Интервал, на котором она задана, может быть бесконечным в одну или обе стороны.

Плотность вероятности непрерывной случайной величины, она же дифференциальная функция распределения вероятностей - аналог закона распределения дискретной с.в. Но если закон распределения дискретной с.в. графически изображается в виде точек, соединённых для наглядности ломаной линией (многоугольник распределения), то плотность вероятностей графически представляет собой непрерывную гладкую линию (или кусочно-гладкую, если на разных отрезках задаётся разными функциями). Аналитически задаётся формулой. Если закон распределения дискретной с.в. ставит каждому значению x в соответствие определённую вероятность, то про плотность распределения такого сказать нельзя. Для непрерывных с.в. можно найти только вероятность попадания в какой-либо интервал. Считается, что для каждого отдельного (одиночного) значения непрерывной с.в. вероятность равна нулю. И графически вероятность попадания в интервал выражается площадью фигуры, ограниченной сверху графиком плотности вероятности, снизу осью ОХ, с боков - рассматриваемым интервалом. Свойства плотности вероятности: 1) Значения функции неотрицательны, т.е. f(x)≥0 2) Основное свойство плотности вероятности: несобственный интеграл от плотности вероятности в пределах от -∞ до +∞ равен единице (геометрически это выражается тем, что площадь фигуры, ограниченной сверху графиком плотности вероятности, снизу - осью OX, равна 1).

Функция распределения случайной величины, она же интегральная функция распределения вероятностей - это функция, определяющая для каждого значения x вероятность того, что случайная величина (ξ) примет значение меньшее, чем x: F(x) = P(ξ < x). Численно функция распределения равна площади фигуры, ограниченной сверху графиком плотности вероятности, снизу осью ОХ, с боков - рассматриваемым интервалом. Основные свойства: 1) Значения функции распределения лежат в интервале [0; 1], т.е. 0 ≤ F(X) ≤ 1 2) Это функция неубывающая, при x→-∞ F(X)→0, при x→+∞ F(X)→1 3) Вероятность попадания в интервал (a, b) определяется формулой F(b) - F(a) Взаимосвязь интегральной и дифференциальной функций распределения вероятностей:

Пример 4.1

Для непрерывной случайной величины задана плотность распределения. Требуется построить графики плотности вероятности и функции распределения, определив предварительно параметр A.

Показать решение

5. Числовые характеристики непрерывных случайных величин

Математическое ожидание непрерывной случайной величины вычисляется по формуле:

В частности, если с.в. задана своей плотностью вероятности на каком-либо отрезке, то и интеграл вычисляем на этом отрезке.

Дисперсия непрерывной случайной величины вычисляется по формуле:

Относительно пределов интегрирования - то же самое.

Среднее квадратическое отклонение непрерывной случайной величины, оно же стандартное отклонение или среднее квадратичное отклонение есть корень квадратный из дисперсии: σ(X) = √D(X)

Мода непрерывной случайной величины Mo(X) - значение с.в., имеющее наибольшую вероятность. Если в задаче требуется определить моду - находим экстремум (максимум) плотности вероятности f(x).

Коэффициент вариации непрерывной случайной величины вычисляется по той же формуле, что и для дискретной с.в.: V(X) = |σ(X)/M(X)| · 100%

Асимметрия (коэффициент асимметрии) случайной величины As(X) - величина, характеризующая степень асимметрии распределения относительно математического ожидания. Коэффициент асимметрии непрерывной случайной величины вычисляется по формуле:

Если коэффициент асимметрии отрицателен, то либо большая часть значений случайной величины, либо мода находятся левее математического ожидания, и наоборот, если As(X)>0, то правее.

Эксцесс (коэффициент эксцесса) случайной величины Ex(X) - величина, характеризующая степень островершинности или плосковершинности распределения. Коэффициент эксцесса непрерывной случайной величины вычисляется по формуле:

Пример 5.1

Для непрерывной случайной величины задана функция распределения. Найти математическое ожидание, дисперсию, среднеквадратическое отклонение. Вычислить вероятность того, что отклонение случайной величины от её математического ожидания не более среднеквадратического отклонения.

Показать решение