Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Графа.doc
Скачиваний:
11
Добавлен:
26.09.2019
Размер:
830.46 Кб
Скачать

Построение кривых Безье [править]Линейные кривые

Параметр t в функции, описывающей линейный случай кривой Безье, определяет где именно на расстоянии от P0 до P1 находится B(t). Например, при t = 0,25 значение функции B(t) соответствует четверти расстояния между точками P0 и P1. Параметр t изменяется от 0 до 1, а B(t) описывает отрезок прямой между точками P0 и P1.

[Править]Квадратичные кривые

Для построения квадратичных кривых Безье требуется выделение двух промежуточных точек Q0 и Q1 из условия чтобы параметр t изменялся от 0 до 1:

  • Точка Q0 изменяется от P0 до P1 и описывает линейную кривую Безье.

  • Точка Q1 изменяется от P1 до P2 и также описывает линейную кривую Безье.

  • Точка B изменяется от Q0 до Q1 и описывает квадратичную кривую Безье.

Построение квадратичной кривой Безье

Анимация t: [0; 1]

[Править]Кривые высших степеней

Для построения кривых высших порядков соответственно требуется и больше промежуточных точек. Для кубической кривой это промежуточные точки Q0Q1 и Q2, описывающие линейные кривые, а также точки R0 и R1, которые описывают квадратичные кривые: более простое уравнение p0q0/p0q1=q1p1/p1p2=bq0/q1q0

Построение кубической кривой Безье

Анимация t: [0; 1]

Для кривых четвёртой степени это будут точки Q0Q1Q2 и Q3, описывающие линейные кривые, R0R1 и R2, которые описывают квадратичные кривые, а также точки S0и S1, описывающие кубические кривые Безье:

Построение кривой Безье 4-й степени

Анимация t: [0; 1]

[Править]Свойства кривой Безье

  • непрерывность заполнения сегмента между начальной и конечной точками;

  • кривая всегда располагается внутри фигуры, образованной линиями, соединяющими контрольные точки;

  • при наличии только двух контрольных точек сегмент представляет собой прямую линию;

  • прямая линия образуется при коллинеарном (на одной прямой) размещении управляющих точек;

  • кривая Безье симметрична, то есть обмен местами между начальной и конечной точками (изменение направления траектории) не влияет на форму кривой;

  • масштабирование и изменение пропорций кривой Безье не нарушает ее стабильности, так как она с математической точки зрения «аффинно инвариантна»;

  • изменение координат хотя бы одной из точек ведет к изменению формы всей кривой Безье;

  • степень кривой всегда на одну ступень ниже числа контрольных точек. Например, при трех контрольных точках форма кривой — парабола;

  • окружность не может быть описана параметрическим уравнением кривой Безье;

  • невозможно создать параллельные кривые Безье, за исключением тривиальных случаев (прямые линии и совпадающие кривые).

[Править]Применение в компьютерной графике

Благодаря простоте задания и манипуляции, кривые Безье нашли широкое применение в компьютерной графике для моделирования гладких линий. Кривая целиком лежит в выпуклой оболочке своих опорных точек. Это свойство кривых Безье с одной стороны значительно облегчает задачу нахождения точек пересечения кривых (если не пересекаются выпуклые оболочки опорных точек, то не пересекаются и сами кривые), а с другой стороны позволяет осуществлять интуитивно понятное управление параметрами кривой в графическом интерфейсе с помощью её опорных точек. Кроме того аффинные преобразования кривой (переносмасштабированиевращение и др.) также могут быть осуществлены путём применения соответствующих трансформаций к опорным точкам.

Наибольшее значение имеют кривые Безье второй и третьей степеней (квадратичные и кубические). Кривые высших степеней при обработке требуют большего объёма вычислений и для практических целей используются реже. Для построения сложных по форме линий отдельные кривые Безье могут быть последовательно соединены друг с другом в сплайн Безье. Для того, чтобы обеспечить гладкость линии в месте соединения двух кривых, три смежные опорные точки обеих кривых должны лежать на одной прямой. В программах векторной графики наподобие Adobe Illustrator или Inkscape подобные фрагменты известны под названием «путей» (path).

9. Цифровой дифференциальный анализатор

        специализированная цифровая интегрирующая машина, основу которой составляют цифровые интегрирующие устройства (См. Интегрирующее устройство) (интеграторы), выполняющие интегрирование по независимой переменной, задаваемой в виде приращений (представленных в двоичной или троичной системе счисления). Решение задачи в Ц. д. а. определяется взаимодействием интеграторов, организуемых так же, как это делается в схемах набора задач в аналоговой вычислительной машине (См. Аналоговая вычислительная машина) (АВМ). Ц. д. а. занимает промежуточное положение между АВМ и ЦВМ: по способам подготовки и методам решения задач Ц. д. а. имеют много общего с АВМ, а по формам представления данных и используемым элементам — с ЦВМ.

         Ц. д. а. по сравнению с АВМ обладают более высокой точностью вычислений, но меньшими быстродействием и универсальностью; они могут выполнять интегрирование по любой независимой переменной, а АВМ — только по времени. Ц. д. а. не могут решать сложных логических задач, как ЦВМ. Изменение переменных в Ц. д. а. определяется накоплением приращений, вследствие чего быстродействие Ц. д. а. обратно пропорционально обеспечиваемой точности вычислений: чем выше требуемая точность, тем меньше должна быть величина каждого элементарного приращения и соответственно ниже быстродействие.

         Ц. д. а. делятся на последовательные и параллельные. В последовательных Ц. д. а. интегрирование осуществляется за счёт многократного использования одного физически реализованного интегратора и запоминания результата интегрирования. Такие Ц. л. а. относительно просты и недороги. В параллельных Ц. л. а. все интеграторы работают одновременно; такие Ц. д. а. сложнее и дороже последовательных, но обеспечивают более высокое быстродействие.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]