Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shiza.docx
Скачиваний:
2
Добавлен:
28.09.2019
Размер:
542.24 Кб
Скачать

Нейромоторные единицы

Скелетные мышцы позвоночных животных снабжаются двигательными нервными волокнами нейронов. находящихся в передних рогах спинного мозга. Эти нервные волокна делятся на веточки, образующие нервные сплетения, расположенные между мышечными клетками, или мышечными волокнами, от которых отходят отдельные нервные волокна, соединенные с группой мышечных волокон. Каждое нервное волокно, иннервирующее группу мышечных волокон, называется нейромоторной или моторной единицей.

Различают нейромоторные единицы, участвующие в фазных движениях (сокращениях и расслаблениях) и в длительных напряжениях мышц. В скелетных мышцах, как правило, содержатся обе группы волокон. Фазные единицы разделяются на быстрые и медленные, в которых скорость проведения возбуждения в несколько раз меньше, чем в быстрых, а его возникновение и продолжительность сокращения больше. В мышцах человека, осуществляющих быстрые и точныедвижения, например в глазных мышцах, в одну моторную единицу, входит 3-6, а в мышцах пальцев рук 10-25 мышечных волокон. В мышцах, производящих медленные движения регуляции позы человека, количество мышечных волокон в одной моторной единице доходит до 2000-3000, в икроножной мышце оно составляет примерно 2000. 

В зависимости от скорости развития максимальной силы сокращения, а также от быстроты утомления различают два типа двигательных единиц:

1) быстрый, утомляемый тип;

2) медленный, мало утомляемый.

В большинстве мышц представлены два типа двигательных единиц, но в разном соотношении, которое варьирует у людей индивидуально. В спортивной физиологии людей с относительно большим процентом быстрых волокон относят к спринтерам, а обладателей большего, чем в среднем, процента медленных волокон – к стайерам. У всех людей при старении процент быстрых волокон уменьшается.

Волокна быстрых двигательных единиц относительно меньше снабжаются кровью и поэтому имеют бледно-красный цвет. Они предназначены для мощных быстрых сокращений в течение короткого времени, поскольку быстро утомляются, не поспевая из-за относительно малого кровоснабжения окислять глюкозу до конечных продуктов. Волокна медленного типа обеспечены обильной сетью кровеносных капилляров, что придаёт им тёмно-красный цвет. И, хотя они сокращаются медленнее, зато способны очень долго работать без утомления. Развиваемая ими сила составляет от 1 до 10% от силы быстрых волокон.

Тела мотонейронов двигательных единиц медленного типа имеют наименьшие размеры и самый низкий порог возбуждения, поэтому только они могут активироваться слабыми входными сигналами. Мотонейроны быстрых двигательных единиц, напротив, являются самыми крупными и, чтобы возбудить их, нужны сильные стимулы. Поэтому медленные двигательные единицы используются при любых движениях, а быстрые – только в тех случаях, когда понадобится большая сила сокращающихся мышц. Так, например, при стоянии или спокойной ходьбе сокращение мышц обеспечивает менее чем половина всех двигательных единиц – здесь сила мышечного сокращения составляет около 20% от максимальной. Для того чтобы выполнить прыжок, может потребоваться максимальная сила: в таком случае понадобится активация мотонейронов быстрых двигательных единиц.

  1. Строение и принцип функционирования нервно-мышечного синапса.

Взаимодействие человека с внешней средой не возможно представить без его мышечной системы. Производимые движения  скелетной мускулатурой необходимы как для выполнения простейших перемещений тела в пространстве, сложных манипуляций хирурга, стоматолога, выражения самых тонких чувств и мыслей с помощью речи, мимики, жестов. Работа сердца обеспечивает кровоснабжение всех органов, работа гладких мышц создает условия для нормального осуществления физиологических процессов, обеспечивающих гомеостаз, практически во всех системах: гастроинтестинальной, сердечно-сосудистой, выделительной, репродуктивной,  дыхательной. Ведущая роль скелетной мускулатуры также в производстве тепла и поддержании температуры тела. Мышцы - это «машины», преобразующие химическую энергию в механическую (работу) и тепло. Масса мышц больше чем других органов, 40-50% от массы тела.  В естественных условиях (в нашем организме) возбуждение  мышечного  волокна (или нескольких мышечных  волокон, составляющих мышцу) возникает в результате передачи возбуждения с нервного  волокна на мембрану  мышечного  в местах контакта нерва и мышцы: нервно-мышечных   синапсах .

Механизм  нервно-мышечной  передачи  Синапсы  представляют собой коммуникационные структуры, которые формируются окончанием нервного  волокна и прилегающей к нему мембраной  мышечного  волокна (пресинаптической нервной  и постсинаптической  мышечной  мембранами) (рис.2).  Рис.2.  Мионевральный  синапс .

Когда  нервный  импульс достигает окончания аксона, на деполяризованной пресинаптической мембране открываются потенциалзависимые Са2+ каналы. Вход Са2+ в аксональное расширение (пресинаптическую мембрану) способствует высвобождению химических нейромедиаторов, находящихся в виде везикул (пузырьков) из окончания аксона. Медиаторы (в  нервно-мышечном  синапсе  это всегда ацетилхолин) синтезируются в соме  нервной  клетки и путем аксонального транспорта транспортируются к окончанию аксона, где и выполняют свою роль. Медиатор диффундирует через синаптическую щель и связывается со специфическими рецепторами на постсинаптической мембране. Так как медиатором в  нервно-мышечном   синапсе  является ацетилхолин, то рецепторы постсинаптической мембраны называют холинорецепторами. В результате этого процесса на постсинаптической мембране открываются хемочувствительные Nа+-каналы, возникает деполяризация, величина которой различна, и зависит от количества выделенного медиатора. Чаще всего возникает локальный процесс, который называют потенциалом концевой пластинки (ПКП). При повышении частоты стимуляции  нервного  волокна, усиливается деполяризация пресинаптической мембраны, а, следовательно, возрастает количество выделяемого медиатора и число активированных хемочувствительных Nа+каналов на постсинаптической мембране. Таким образом, возникают ПКП, которые по амплитуде деполяризации суммируются до порогового уровня, после чего, на мембране  мышечного  волокна, окружающей  синапс , возникает ПД, который обладает способностью к распространению вдоль мембраны  мышечного  волокна. Чувствительность постсинаптической мембраны регулируется активностью фермента – ацетилхолинэстеразы (АЦХ-Э), который гидролизует медиатор АЦХ на составные компоненты (ацетил и холин) и возвращает назад – в пресинаптическую бляшку для ресинтеза. Без удаления медиатора на постсинаптической мембране развивается длительная деполяризация, которая ведет к нарушению проведения возбуждения в  синапсе  – синаптической депрессии. Таким образом, синаптическая связь обеспечивает одностороннее проведение возбуждения с нерва на мышцу, однако на все эти процессы расходуется время (синаптичекая задержка), что приводит к низкой лабильности  синапса  по сравнению с  нервным  волокном. Таким образом,  нервно-мышечный   синапс  является «выгодным» местом, куда можно воздействовать фармакологическими препаратами, изменяя чувствительность рецептора, активность фермента. Эти явления будут часто встречаться в практике врача: например, при отравлении токсином ботулизма – блокируется высвобождение медиатора АЦХ (разглаживание морщин в косметической медицине), блокада холиноререпторов (курареподобными препаратами, бунгаротоксином) нарушает открытие Nа+ каналов на постсинаптической мембране. Фосфоорганические соединения (множество инсектицидов) нарушает эффективность АЦХ-Э и вызывает длительную деполяризацию постсинаптической мембраны. В клинике используют специфические блокаторы  нервно-мышечного  проведения: блокада холинорецепторов курареподобными препаратами, сукцинилхолином и другими конкурентными ингибиторами, вытесняющими АЦХ с холинорецептора. При заболевании миастении из-за дефицита холинорецепторов на постсинаптической мембране (из-за их аутолитического разрушения) возникает прогрессирующая мышечной слабость, вплоть до полной остановки мышечных сокращений (остановка дыхания). В этом случае используют блокаторы АЦХ-Э, что приводит к увеличению длительности связывания медиатора с меньшим количеством холинорецепторов и несколько увеличивает амплитуду деполяризации постсинаптической мембраны.

  1. Классификация нервных волокон.

  2. Особенности строения миелиновых и безмиелиновых нервных волокон.

  3. Механизмы передачи возбуждение по нервным волокнам.

  4. Законы распространения возбуждения по нервным волокнам.

Законы проведение возбуждения по нервам. I закон анатомо-физиологический целостности нервного волокна. Чтобы возбуждение распространялось по нервному волокну необходимо не только его морфологическая целостность, но и физиологическая непрерывность. Препараты для проводниковой анестезии нарушают физиологическую непрерывность тем, что инактивируют натриевую проницаемость в нервных волокнах. II закон изолированного проведения возбуждения по нервному волокну. В смешанном нерве возбуждение с одного нервного волокна не передается на соседние, так как сопротивление межклеточной жидкости меньше чем сопротивление мембран соседних волокон. Этим обеспечивается точность проведения информации в нервных волокнах к иннервируемым структурам.  III закон двухстороннее проведение возбуждения. Распространение ПД по мембране нервного волокна возможно в обе стороны, так как строение мембраны на всем протяжении одинаково. В то же время возбуждение не может возвратиться в участок, где оно возникло, так как он находится в состоянии рефрактерности.

Парабиоз. Н.Е. Введенский, исследуя прохождение импульса через отрезок нерва на который воздействую химические или наркотические вещества (альтераторы), наблюдал резкое снижение лабильности. Парабиоз характеризуется постепенным развитием , в котором можно выделить четыре фазы:  I Продромальная (не всегда проявляется, так как очень кратковременная) характеризуется: повышением возбудимости, повышением лабильности. II Уравнительная – эффекты от сильных и слабых раздражителей уравновешиваются. III Парадоксальная - на сильные, либо частые раздражения эффект бывает меньше, чем на слабые или редкие. IV Тормозная – ни сильные, ни слабые раздражения не вызывают сокращения мышц. Через поражённый участок не проходят импульсы.

Если второй парой электродов подействовать на поражённый участок, то возбуждение будет, т.е. ткань ещё жива.  Если снять альтератор, то ткань возвращается к исходному состоянию в обратном порядке фаз IV, III, II, I. Парабиоз – это стойкое не распространяющееся возбуждение. Возникают потенциалы меньшие по своей амплитуде, а дальше абортивные потенциалы, не способные распространяться: уменьшаются процессы Na-евой проницаемости, и увеличиваются процессы Na-евой инактивации

  1. Понятие о центральной нервной системе, отделы ЦНС.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]