Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shiza.docx
Скачиваний:
2
Добавлен:
28.09.2019
Размер:
542.24 Кб
Скачать

Различные виды кожных рецепторов.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

  1. Принципы кодирования информации в ЦНС.

 Кодированием называют процесс преобразования информации в условную форму - код.

ЦНС использует двоичный код: наличие или отсутствие импульса (0 или 1). Параметры отдельного импульса стандартны (по амплитуде, длительности, модальности). Осуществляется кодирование путем изменения: а) частоты импульсов, б) количества импульсов в пачке, в) длительности пачек, г) интервалов между пачками, д) временного рисунка пачки, т.е. распределения в ней отдельных импульсов.

Особенностью кодирования в живых системах является, во-первых, отсутствие декодирования (т.е. восстановления стимула в его исходной форме), во-вторых, множественность и перекрытие кодов (для одного и того же признака сигналов), т.е. в анализаторе используется несколько вариантов кодов (частота импульсов, число возбужденных элементов и их локализация), в-третьих, особенностью является зашумленность большинства сенсорных кодов, т.е. добавление к импульсам, несущим информацию, фоновой импульсации (во вторично чувствующих рецепторах выделяется медиатор в небольших количествах, и без действия раздражителей создается, так называемый, шумовой эффект).

  1. Механизмы распространения возбуждения в ЦНС.

Возбуждение связано с развитием в нейроне временной деполяризации. Деполяризации ответ нейрона на возбуждение получила название возбуждающего постсииаптичного потенциала (ВПСП). Внутриклеточно ВПСП в нейронах млекопитающих был впервые зарегистрирован Д. Экклс с сотрудниками (1966) с помощью микроелектроннои техники. В отличие от возбуждения, которая распространяется (ПД), ВПСП является местным. Оно локальное, градуально (зависит от силы раздражения, то есть не подчиняется закону «все или ничего»), способное к суммации предварительной деполяризацией, не оставляет после себя рефрактерности. По своим характеристикам ВПСП идентичен потенциала концевой пластинки (ПКП) в нервно-мышечном соединении. Однако, если ПКП является следствием активации одного синапса, то ВПСП преимущественно возникает при одновременной активации нескольких синапсов. ВПСП достигает максимума в течение 1,5-2 мс, после чего медленно затухает по экспоненте. Длительность ВПСП многих нейронов ЦНС составляет около 15 мс, а амплитуда может достигать-20-ЗО мВ при величине мембранного потенциала -70 мВ. Местом первичной генерации ПД в нейроне в большинстве случаев начальная часть аксона (аксонного бугорок). Высокая возбудимость этого бугорка объясняется тем, что порог его деполяризации вдвое меньше (15 мВ), чем в соме нейрона (С мВ). Это объясняется тем, что в мембране аксонного бугорка значительно больше ионных каналов. Так наиболее возбуждающее участок нейрона (так называемая , И только после ее возбуждения импульс распространяется, с одной стороны, на аксон, а с другой - на сому и дендриты. ПД нейрона регистрируется внутриклеточно, имеет два компонента: сначала регистрируется потенциал начального сегмента, или ПС-потенциал, а затем потенциал Кыргызстана и дендритов - СД-потенциал. В основе возникновения возбуждения лежит трансмембранный движение ионов, среди которых доминирующая роль принадлежит Са2 +. Увеличение содержания кальция в среде и цитоплазме, влияние антагонистов кальциевой проводимости (BAYK 8644) приводят к возбуждению, в то время как блокаторы Са2 +-каналов (верапамил, Д-600) тормозят его "развитие. Есть указания и о возможном участии в генерации ВПСП Na + и Cl-, Возбуждение нейрона сопровождается изменениями метаболизма, в частности синтеза РНК и другими сдвигами в процессе белкового синтеза, усилением теплопродукции, поглощением кислорода, которые отражают интенсификацию жизнедеятельности клетки.

  1. Понятие о нервном центре.

Понятие о нервном центре

Нервным центром называют совокупность нейронов,  участвующих в реализации определенного рефлекса, регуляции той или иной функции или осуществлении сложного поведенческого акта. Не следует понимать нервный центр как что-то узко локализованное в одном участке ЦНС. Клетки одного нервного центра могут быть расположены в разных отделах ЦНС.Понятие анатомическое по отношению к нервному центру рефлекса неприменимо потому, что в осуществлении любого сложного рефлекторного акта принимает участие всегда целая констелляция нейронов, расположенных на разных этажах нервной системы. Опыты с раздражением или перерезкой ЦНС показывают лишь, что отдельные нервные образования обязательны для осуществления того или иного рефлекса, а другие необязательны, хотя и участвуют при обычных условиях в рефлекторной деятельности. Примером служит дыхательный центр, в который в настоящее время включают не только "центр дыхания" продолговатого мозга, но и пневмотаксический центр моста, нейроны ретикулярной формации, коры и мотонейроны дыхательных мышц. Например, центр речи расположен в продолговатом и среднем мозге, откуда управляются речевые мышцы языка, гортани и губ. Части этого центра находятся в височной, лобной и теменной областях коры больших полушарий.

  1. Свойства нервных центров.

Нервные центры обладают рядом характерных свойств, определяемых свойствами составляющих его нейронов, особенностями синаптической передачи нервных импульсов и структурой нейронных цепей, образующих этот центр (рис. 1).

 

 

 

 

 

 

 

 

 

Рис. 1. Разнообразие свойств нервных центров.

        Свойства эти следующие:

      1. Одностороннее проведение в нервных центрах можно доказать при раздражении передних корешков и отведении потенциалов от задних. В этом случае осциллограф не зарегистрирует импульсов. Если поменять электроды - импульсы будут поступать нормально.

     2. Задержка проведения в синапсах. По рефлекторной дуге проведение возбуждения происходит медленнее, чем по нервному волокну. Это определяется тем, что в одном синапсе переход медиатора к постсинаптической мембране происходит за 0,3-0,5 мсек. (т.н. синаптическая задержка). Чем больше синапсов в рефлекторной дуге, тем больше время рефлекса, т.е. интервал от начала раздражения до начала деятельности. С учетом синаптической задержки проведение раздражения через один синапс требует около 1,5-2 мсек.

      У человека наименьшую продолжительность имеет время сухожильных рефлексов (оно равно 20-24 мсек). У мигательного рефлекса оно больше - 50-200 мсек. Время рефлекса складывается из:

      а) времени возбуждения рецепторов;

      б) времени проведения возбуждения по центростремительным нервам;

      в) времени передачи возбуждения в центре через синапсы;

      г) времени проведения возбуждения по центробежным нервам;

     д) времени передачи возбуждения на рабочий орган и латентного периода его деятельности.

    Время "в" носит название центрального времени рефлекса.

    Для упомянутых выше рефлексов оно составляет соответственно 3 мсек. и 36-180 мсек. Зная центральное время рефлекса, и учитывая, что через один синапс возбуждение проходит за 2 мсек., можно определить число синапсов в рефлекторной дуге. Например, коленный рефлекс считают моносинаптическим.

     3.Суммация возбуждений. Впервые Сеченов показал, что в целостном организме рефлекторный акт может осуществляться при действии подпороговых стимулов, если они действуют на рецепторное поле достаточно часто. Такое явление получило название временной (последовательной) суммацией . Пример - рефлекс чесания у собаки можно вызвать, если подать в одну точку подпороговые стимулы с частотой 18 гц. Суммация подпороговых стимулов можно получить и тогда, когда они прикладываются на разные точки кожи, но одновременно - это пространственная суммация.

      В основе этих явлений лежит процесс суммации возбуждающих постсинаптических потенциалов на теле и дендритах нейронов. При этом происходит накопление медиатора в синаптической щели. В естественных условиях оба вида суммации сосуществуют.

 

4. Центральное облегчение. Возникновение временной и особенно пространственной суммации способствуют и особенности организации синаптического аппарата в нервных центрах. Каждый аксон, поступая в ЦНС, ветвится и образует синапсы на большой группе нейронов (нейронный пул, или нейронная популяция). В такой группе принято условно различать центральную (пороговую) зону, и периферическую (подпороговую) кайму. Нейроны, находящиеся в центральной зоне, получают от каждого рецепторного нейрона достаточное количество синаптических окончаний для того, чтобы ответить разрядом ПД на приходящие импульсы. На нейронах же подпороговой каймы каждый аксон образует лишь небольшое число синапсов, возбуждение которых не способно возбудить нейрон. Нервные центры состоят из большого числа нейронных групп, причем отдельные нейроны могут входить в разные нейронные пулы. Это объясняется тем, что на одних и тех же нейронах оканчиваются разные афферентные волокна. При совместном раздражении этих афферентных волокон возбуждающие постсинаптические потенциалы в нейронах подпороговой каймы суммируются друг с другом и достигают критической величины. В результате в процесс возбуждения оказываются вовлеченными и клетки периферической каймы. При этом сила рефлекторной реакции суммарного раздражения нескольких "входов" в центр оказывается больше арифметической суммы раздельных раздражений. Этот эффект и носит название центрального облегчения.

5Центральная окклюзия (закупорка). Может наблюдаться в деятельности нервного центра и обратный эффект, когда одновременное раздражение двух афферентных нейронов вызывает не суммацию возбуждения, а задержку, уменьшение силы раздражения. В этом случае суммарная реакция меньше арифметической суммы раздельных эффектов. Происходит это потому, что отдельные нейроны могут входить в центральные зоны разных нейронных популяций. В таком случае появление возбуждающих постсинаптических потенциалов на телах нейронов не приводят к увеличению числа возбужденных одновременно клеток. Если суммация лучше проявляется при действии слабых афферентных раздражений, то явления окклюзии хорошо выражены с случае применения сильных афферентных раздражений, каждое их которых активирует большое число нейронов. Более наглядно эти эффекты видны на схемах в таблицах.

6.Трансформация ритма возбуждений. Частота и ритм импульсов, поступающих к нервным центрам, и посылаемых ими на периферию, могут не совпадать. Это явление носит название трансформации. В ряде случаев на одиночный импульс, приложенный к афферентному волокну, мотонейрон отвечает серией импульсов. Образно говоря, в ответ на одиночный выстрел нервная клетка отвечает очередью. Чаще это бывает при длительном постсинаптическом потенциале и зависит от триггерных свойств аксонного холмика.

      Другой механизм трансформации связан с эффектами сложения фаз двух или более волн возбуждения на нейроне - тут возможны эффекты как увеличения , так и снижения частоты выходящих из центра стимулов.

 

 

      7. Последействие. Рефлекторные акты, в отличие от потенциалов действия, заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длинный период времени. Продолжительность последействия может во много раз превышать продолжительность раздражения. Последействие обычно бывает больше при сильном и длительном раздражении.

       Имеются два основных механизма, обусловливающих эффект последействия. Первый связан с суммацией следовой деполяризации мембраны при частых раздражениях (посттетаническая потенциация), когда нервная клетка продолжает давать разряды импульсов, несмотря на то, что кончилась серия раздражений. Второй механизм связывает последействие с циркуляцией нервных импульсов по замкнутым нейронным сетям рефлекторного центра.

       8. Утомление нервных центров. В отличие от нервных волокон нервные центры легко утомляемы. Утомление нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нервных волокон. Если после этого приложить раздражение в эфферентному волокну - эффект возникает вновь. Утомление в нервных центрах связано прежде всего с нарушением передачи возбуждения в межнейронных синапсах. Такое нарушение зависит от уменьшения запасов синтезированного медиатора, уменьшением чувствительности к медиатору постсинаптической мембраны, уменьшением энергетических ресурсов нервной клетки. Не все рефлекторные акты утомляются быстро (например, мало утомляемы проприоцептивные тонические рефлексы).

     9. Рефлекторный тонус нервных центров. В его поддержании участвуют как афферентные импульсы, поступающие непрерывно от периферических рецепторов в ЦНС, так и различные гуморальные раздражители (гормоны, углекислота, и др.)

    10. Высокая чувствительность к гипоксии. Показано, что 100 г. нервной ткани в единицу времени потребляет кислорода в 22 раза больше, чем 100 г. мышечной ткани. Поэтому нервные центры очень чувствительны к его недостатку. При этом чем выше центр, тем более страдает он от гипоксии. Для коры мозга 5-6 минут достаточно, чтобы без кислорода произошли необратимые изменения, клетки ствола мозга выдерживают 15-20 минут полного прекращения кровообращения, а клетки спинного мозга - 20-30 минут. При гипотермии, когда снижается обмен веществ, ЦНС дольше переносит гипоксию.

     11. Избирательная чувствительность к химическим веществам. Объясняется особенностями обменных процессов и позволяет находить фармпрепараты направленного действия.

Такие свойства как однонаправленность проведения, замедление проведения нервных импульсов, и суммация непосредственно вытекают из свойств отдельных нейронов. Усвоение и трансформация ритма приходящих в центр импульсов проявляются в способности центра возбуждаться или тормозиться в соответствии с ритмом поступающих сигналов. Это свойство имеет значение для взаимодействия нервных центров при организации поведенческих актов. Кроме того, нервный центр способен превращать ритм приходящих импульсов в свой собственный.

  1. Виды торможения в ЦНС.

Торможение - особый нервный процесс, который обусловливается возбуждением и внешне проявляется угнетением другого возбуждения. Оно способно активно распространяться нервной клеткой и ее отростками. Основал учение о центральное торможение И. М. Сеченов (1863), который заметил, что изгибающий рефлекс лягушки тормозится при химическом раздражении среднего мозга. Торможение играет важную роль в деятельности ЦНС, а именно: в координации рефлексов; в поведении человека и животных; в регуляции деятельности внутренних органов и систем; в осуществлении защитной функции нервных клеток. Типы торможения в ЦНС. Центральное торможение распределяется по локализации на пре-и постсинаптического; по характеру поляризации (зарядом мембраны)-на гипер-и деполяризации; по строению тормозных нейронных цепей - на реципрокное, или соединенное, обратное и латеральное.

  1. Механизмы пресинаптического торможения, его физиологическое значение.

Пресинаптическое торможение, как свидетельствует название, локализуется в пресинаптических элементах и ??связано с угнетением проведения нервных импульсов в аксональных (пресинаптических) окончаниях. Гистологическим субстратом такого торможения является аксональные синапсы. К возбуждающего аксона подходит вставной тормозной аксон, который выделяет тормозной медиатор ГАМК. Этот медиатор действует на постсинаптическую мембрану, которая является мембраной возбуждающего аксона, и вызывает в ней деполяризацию. Возникла деполяризация тормозит вход Са2 + из синаптической щели в заключение возбуждающего аксона и таким образом приводит к снижению выброса возбуждающего медиатора в синаптическую щель, торможение реакции. Пресинаптическое торможение достигает максимума через 15-20 мс и длится около 150 мс, то есть гораздо дольше, чем постсинаптического торможения. Пресинаптическое торможение блокируется судорожными ядами - бикулгном и Пикротоксин, которые являются конкурентными антагонистами ГАМК.

  1. Механизмы постсинаптического торможения, его физиологическое значение.

Постсинаптическое торможение - это снижение возбудимости постсинаптической мембраны нейрона, препятствующее распространению импульса.

Нервный импульс в тормозных нейронах вызывает гиперполяризационный сдвиг потенциала, в результате чего уровень мембранного потенциала начинает сильнее отличаться от порогового потенциала , необходимого для генерации потенциала действия .

Поэтому гиперполяризация постсинаптической мембраны называется тормозным постсинаптическим потенциалом .

Механизм высвобождения медиатора в тормозных синапсах и возбуждающих синапсах , видимо, аналогичен. Тормозным медиатором в мотонейронах и некоторых других синапсах служит аминокислота глицин . Медиатор, действуя на постсинаптическую мембрану, открывает поры, или каналы, через которые могут проходить все мелкие ионы. Если стенка поры несет электрический заряд, то он препятствует прохождению одноименно заряженных ионов.

При одновременном возникновении возбуждающих и тормозных синаптических процессов амплитуда возбуждающего постсинаптического потенциала уменьшается в зависимости от амплитуды тормозного постсинаптического потенциала .

  1. Вторичное торможение, его механизмы и физиологическая роль.

Вторичное торможение возникает в обычных возбудимых структурах и связано с процессом возбуждения.

Виды вторичного поражения.

Запредельное торможение - возникает в нейронах центральной нервной системы в том случае, когда поток информации к телу нейрона выше его работоспособности. Развивается резкое снижение возбудимости нейрона.

Парабиотическое торможение - возникает при действии сильных и длительно действующих раздражителей (парабиоз в тканях). Парабиоз - явление пограничного состояния между гибелью и жизнью ткани (резко падают все свойства ткани, основное свойство - фазное изменение лабильности). Если парабиотический фактор продолжает действовать, ткань гибнет.

Пессимальное торможение - возникает в синапсах центральной нервной системы при действии сильных и частых раздражителей.

Торможение вслед за возбуждением - угнетение нейронов после возбуждения. Результат того, что вслед за пиком потенциала действия возникает период следовой гиперполяризации, который характеризуется снижением возбудимости.

Торможение в центральной нервной системе. Явление торможения в нервных центрах было впервые открыто И. М. Сеченовым в 1862 г. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга».

Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивания лапки). Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный опыт вошел в историю физиологии под названием «Сеченовского торможения».

Тормозные процессы — необходимый компонент в координации нервной деятельности. Во-первых, процесс торможенияограничивает иррадиацию возбуждения, чем способствует его концентрации в необходимых участках нервной системы. Во-вторых,возникая в одних нервных центрах параллельно с возбуждением других нервных центров, процесс торможения тем самым выключает деятельность ненужных в данный момент органов, осуществляя координационную функцию. В-третьих, развитие торможения в нервных центрах предохраняет их от чрезмерного перенапряжения при работе, т. е. играет охранительную роль.

По месту возникновения различают пресинаптическое торможение и постсинаптическое.

Постсинаптическое торможение. Оно возникает в постсинаптической мембране нейрона в результате действия тормозного медиатора и связано с наличием в центральной нервной системе специальных тормозных нейронов. Это особый тип вставочных нейронов, у которых окончания аксонов выделяют тормозной медиатор. Природа тормозного медиатора в настоящее время точно не установлена. Нервные импульсы, подходя к тормозным нейронам, вызывают в них такой же процесс возбуждения, как и в Других нервных клетках. В ответ по аксону тормозной клетки распространяется обычный ПД, но в отличие от других нейронов окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. Под влиянием этого медиатора возникает кратковременная гиперполяризация постсинаптической мембраны следующего нейрона и регистрируется тормозной постсинаптический потенциал (ТПСП). В результате тормозные клетки не возбуждают, а тормозят те нейроны, на которых оканчиваются их аксоны. Такой вид торможения называют прямым, так как оно возникает сразу, без предварительного возбуждения.

С пециальные тормозные нейроны. — это клетки Рэншоу в спинном мозгу и корзинчатые клетки в промежуточном мозгу. Клеткам Рэншоу принадлежит важная роль в координации деятельности спинного мозга. Большое значение, например, эти клетки имеют при регуляции деятельности мышц-антагонистов. Они обеспечивают развитие торможения в мотонейронах мышц-антагонистов (рис. 52, В), что облегчает осуществление сокращения этих мышц. Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов, ограничивая (тормозя) чрезмерное их возбуждение.

Корзинчатые клетки играют важную роль в регуляции деятельности высших отделов мозга — промежуточного мозга и коры больших полушарий. Они являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий.

Это обусловлено тем, что эти клетки вызывают синхронное торможение большого числа связанных с ними нейронов промежуточного мозга, регулируя тем самым прохождение  восходящих импульсов через эти нейроны, время поступления их в кору больших полушарий и ритм корковой активности (см. рис. 52, Г).

При возбуждении мотонейрона спинного мозга импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона — к тормозной клетке Рэншоу. Аксоны последней «возвращаются» к этому же мотонейрону, вызывая его торможение (см. рис. 52, Б). Следовательно, через клетку Рэншоу мотонейрон может сам себя затормаживать. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система действует как механизм саморегуляции нейрона, ограничивая степень его возбуждения и предохраняя от чрезмерной активности.

Пресинаптическое торможение. Оно возникает перед синоптическим контактом — в пресинаптической области.Окончания аксонов одной нервной клетки образуют аксоаксональный синапс на окончании аксона другой нервной клетки и блокируют передачу возбуждения в последнем (см. рис. 52, Л). В области такого пресинаптического контакта развивается чрезмерно сильная деполяризация мембраны аксона, которая приводит к состоянию парабиоза (пессимального торможения, по Н. Е. Введенскому). Заторможенный концевой участок аксона прекращает проведение нервных импульсов к синапсу и, значит, к следующей нервной клетке. Этот вид торможения обусловливает ограничение притока афферентных импульсов к нервным центрам.

  1. Виды торможения в нервных центрах.

  1. Принципы координации рефлекторной деятельности нервных центров.

  2. Спинной мозг, его строение и функции.

  3. Нейроны спинного мозга, их функции.

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество рас­пределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога (рис. 4.9).

 

Задние рога выполняют главным образом сенсорные фун­кции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

 

В передних рогах находятся нейроны, дающие свои ак­соны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

 

Начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, в боковых рогах серого вещества располагаются нейроны симпатического, а в крестцовых — пара­симпатического отдела автономной (вегетативной) нервной систе­мы.

 

Спинной мозг человека содержит около 13 млн. нейронов, из них 3% — мотонейроны, а 97% — вставочные. Функциональ­но нейроны спинного мозга можно разделить на 4 основные группы:

 

1)     мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки;

 

2)     интернейроны — нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

 

3)     симпатические,  парасимпатические  нейроны  расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

 

4)     ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

 

В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1—2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга — эта сеть образует так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.

 

Средняя часть серого вещества спинного мозга содержит пре­имущественно короткоаксонные веретенообразные клетки (проме­жуточные нейроны), выполняющие связующую функцию между симметричными отделами сегмента, между клетками его передних и задних рогов.

 

Мотонейроны. Аксон мотонейрона своими терминалами иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Чем меньше мышечных волокон иннервирует один аксон (т. е. чем меньше количественно мотонейронная единица), тем более дифференцированные, точные движения выполняет мышца (см. раздел 2.4).

 

Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов одного пула различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздра­жения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение мышцы.

 

Мотонейроны спинного мозга функционально делят на α- и γ-нейроны.

 

α-Мотонейроны образуют прямые связи с чувствительными пу­тями, идущими от экстрафузальных волокон мышечного веретена, имеют до 20 000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10—20 в секунду), γ-Мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежу­точные нейроны. Сокращение интрафузального мышечного волокна не приводит к сокращению мышцы, но повышает частоту разрядов импульсов, идущих от рецепторов волокна в спинной мозг. Эти нейроны обладают высокой частотой импульсации (до 200 в се­кунду).

 

Интернейроны. Эти промежуточные нейроны, генерирующие им­пульсы с частотй до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функ­цией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения. Воз­буждение интернейронов, связанных с моторными клетками, ока­зывает тормозящее влияние на мышцы-антагонисты.

 

Нейроны симпатического отдела автономной системы. Распо­ложены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3—5 в секунду).

 

Нейроны парасимпатического отдела автономной системы. Локализуются в сакральном отделе спинного мозга и являются фоновоактивными.

 

В случаях раздражения и поражения задних корешков спинного мозга наблюдаются «стреляющие», опоясывающие боли на уровне метамера пораженного сегмента, снижение чувствительности всех видов, утрата или снижение рефлексов, вызываемых с метамера тела, который передает информацию в пораженный корешок.

 

В случаях изолированного поражения заднего рога утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняется, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной — прямо в задний столб и по проводящим путям поднимаются вверх.

 

Вследствие того, что аксоны вторых нейронов болевой и темпе­ратурной чувствительности идут на противоположную сторону через переднюю серую спайку спинного мозга, при повреждении этой спайки на теле симметрично утрачивается болевая и температурная чувствительность.

 

Поражение переднего рога и переднего корешка спинного моз­га приводит к параличу мышц, которые теряют тонус, атрофи­руются, при этом исчезают рефлексы, связанные с пораженным сегментом.

 

В случае поражения боковых рогов спинного мозга исчезают кожные сосудистые рефлексы, нарушается потоотделение, наблю­даются трофические изменения кожи, ногтей. При одностороннем поражении парасимпатического отдела автономной нервной системы на уровне крестцовых отделов спинного мозга нарушений дефекации и мочеиспускания не наблюдается, так как корковая иннервация этих центров является двусторонней.

  1. Проводящие пути спинного мозга, их функции.

Восходящие проводящие пути. Несут импульсы от рецепторов, воспринимающих информацию из внешнего мира и внутренней среды организма. В зависимости от вида чувствительности, которую они проводят, их делят на пути экстеро—, проприо— и интероцептивной чувствительности. Нисходящие пути передают импульсы от структур головного мозга к двигательным ядрам, осуществляющим ответные реакции на внешние и внутренние раздражения.

Основными восходящими путями спинного мозга являются тонкий пучок, клиновидный пучок, латеральный и вентральный спинно—таламические пути, дорсальный и вентральный спинно—мозжечковые пути (рис. 3.19).

Тонкий пучок (Голля) и клиновидный пучок (Бурдаха) составляют задние канатики спинного мозга. Эти пучки волокон являются отростками чувствительных клеток спинальных ганглиев, проводящих возбуждение от проприорецепторов мышц, сухожилий, частично тактильных рецепторов кожи, висцерорецепторов. Волокна тонкого и клиновидного пучков — миелинизированные, они проводят возбуждение со скоростью 60—100 м/с. Короткие аксоны обоих пучков устанавливают синаптические связи с мотонейронами и интернейронами своего сегмента, длинные же направляются в продолговатый мозг. По пути они отдают большое число ветвей к нейронам вышележащих сегментов спинного мозга, образуя, таким образом, межсегментарные связи.

По волокнам тонкого пучка проводится возбуждение от каудальной части тела и тазовых конечностей, по волокнам клиновидного пучка — от краниальной части тела и грудных конечностей. В спинном мозгу оба этих пути идут, не прерываясь и не перекрещиваясь, и оканчиваются в продолговатом мозгу у одноименных ядер, где образуют синаптическое переключение на второй нейрон. Отростки второго нейрона направляются к специфическим ядрам таламуса противоположной стороны, образуя тем самым своеобразный перекрест. Здесь они переключаются уже на третий нейрон, аксоны которого достигают нейронов IV слоя коры больших полушарий.

Считают, что по этой системе проводится информация тонко дифференцированной чувствительности, позволяющая определить локализацию, контур периферического раздражения, а также его изменения во времени.

По латеральному спинно—таламическому пути проводится болевая и температурная чувствительность, по вентральному спинно—таламическому —тактильная. Существуют сведения, что по этим путям возможна также передача возбуждения от проприо— и висцероцепторов. Скорость проведения возбуждения в волокнах составляет 1—30 м/с. Спинно—таламические пути прерываются и перекрещиваются либо на уровне сегмента, в который они только что вступили, либо вначале проходят несколько сегментов по своей стороне, а затем переходят на противоположную. Отсюда идут волокна, оканчивающиеся в таламусе. Там они образуют синапсы на нервных клетках, аксоны которых направляются в кору больших полушарий.

Полагают, что по системе волокон этих путей в основном передается информация о качественной природе раздражителей.

Дорсальный спинно—мозжечковый путь, или пучок Флексига — филогенетически это наиболее древний чувствительный путь спинного мозга. Местом расположения нервных клеток, аксоны которых образуют волокна этого пути, является основание дорсального рога спинного мозга. Не перекрещиваясь, путь достигает мозжечка, где каждое волокно занимает определенную область. Скорость проведения по волокнам спинно—мозжечкового пути около 110 м/с. По ним проводится информация от рецепторов мышц и связок конечностей. Наибольшего развития этот путь достигает у копытных животных.

Вентральный спинно—мозжечковый путь, или пучок Говерса, также образуется аксонами интернейронов противоположной стороны спинного мозга. Через продолговатый мозг и ножки мозжечка волокна направляются к коре мозжечка, где занимают обширные площади. Импульсы со скоростью проведения до 120 м/с идут от сухожильных, кожных и висцерорецепторов. Они участвуют в поддержании тонуса мышц для выполнения движений и сохранения позы.

Нисходящие проводящие пути. Эти пути (рис. 3.20) связывают высшие отделы ЦНС с эффекторными нейронами спинного мозга. Основными из них являются пирамидный, красноядерно—спинномозговой и ретикулярно—спинномозговой пути.

Пирамидный путь образован аксонами клеток двигательной зоны коры больших полушарий. Направляясь к продолговатому мозгу, эти аксоны отдают большое число коллатералей структурам промежуточного, среднего, продолговатого мозга и ретикулярной формации. В нижней части продолговатого мозга большая часть волокон пирамидного пути переходит на противоположную сторону (перекрест пирамид), образуя латеральный пирамидный путь. В спинном

мозгу он располагается в боковом канатике. Другая часть волокон идет, не перекрещиваясь, до спинного мозга и только на уровне сегмента, в котором оканчивается, переходит на противоположную сторону. Это прямой вентральный пирамидный путь. Оба заканчиваются на мотонейронах передних рогов серого вещества спинного мозга. Состав волокон этого пути неоднороден, в нем представлены миелинизированные и немиелинизированные волокна разного диаметра со скоростями проведения возбуждения от 1 до 100 м/с.

Основной функцией пирамидных путей является передача импульсов для выполнения произвольных движений. Надежность в осуществлении этой функции повышается благодаря дублированию связи головного мозга со спинным посредством двух путей — перекрещенного и прямого. В эволюционном ряду пирамидный тракт развивался параллельно с развитием коры больших полушарий и достиг наибольшего совершенства у человека.

Красноядерно—спинномозговой путь (Монакова) образован аксонами клеток красного ядра среднего мозга. Выйдя из ядра, волокна полностью переходят на противоположную сторону. Часть из них направляется в мозжечок и ретикулярную формацию, другие — в спинной мозг. В спинном мозгу волокна располагаются в боковых столбах перед перекрещенным пирамидным путем и оканчиваются на интернейронах соответствующих сегментов. Красноядерно—спинномозговой путь несет импульсы от мозжечка, ядра вестибулярного нерва, полосатого тела.

Основное назначение красноядерно—спинномозгового пути — управление тонусом мышц и непроизвольной координацией движений. В процессе эволюции этот путь возник рано. Большое значение он имеет у животных, слабее развит у человека.

Преддверно—спинномозговой путь образован волокнами, которые являются отростками клеток латерального пред дверного ядра (ядра Дейтерса), лежащего в продолговатом мозгу. Этот тракт имеет наиболее древнее эволюционное происхождение. По нему передаются импульсы от вестибулярного аппарата и мозжечка к мотонейронам вентральных рогов спинного мозга, регулирующие тонус мускулатуры, согласованность движений, равновесие. При нарушении целостности этого пути наблюдаются расстройства координации движений и ориентации в пространстве.

В спинном мозгу помимо основных длинных имеются и короткие нисходящие пути, соединяющие между собой его отдельные сегменты.

  1. Рефлексы спинного мозга, методы их исследования.

  2. Роль спинного мозга в организации и регуляции движений.

  3. Функциональное строение продолговатого мозга.

Продолговатый мозг является частью ствола головного мозга. Получил свое название в связи с особенностями анатомической строения (рис. 16). Расположен в задней черепной ямке. Сверху продолговатый мозг граничит с варолиевым мостом; книзу без четкой границы переходит в спинной мозг через большое затылочное отверстие. Задняя поверхность продолговатого мозга вместе с мостом составляет дно IV желудочка. Длина продолговатого мозга взрослого человека – 8 см, поперечник – до 1,5 см.

Продолговатый мозг состоит из ядер черепных нервов, а также исходящих и восходящих проводниковых систем. Важным образованием продолговатого мозга является сетевидная субстанция, или ретикулярная формация. Ядерными образованиями продолговатого мозга являются: 1) оливы, имеющие отношение к экстрапирамидной системе (они связаны с мозжечком); 2) ядра Голля и Бурдаха. в которых расположены вторые нейроны про-приоцептивной (суставно-мышечной) чувствительности; 3) ядра черепных нервов: подъязычного (XII пара), добавочного (XI пара), блуждающего (X пара), язы-коглоточного (IX пара), нисходящая часть одного из чувствительных ядер тройничного нерва (его головная часть расположена в мосту).

В продолговатом мозге проходят проводящие пути: нисходящие и восходящие, связывающие продолговатый мозг со спинным мозгом, верхним отделом ствола мозга, стриопаллидарной системой, корой больших полушарий, ретикулярной формацией, лимбической системой.

Проводящие пути продолговатого мозга являются продолжением путей спинного мозга. Спереди располагаются образующие перекрест пирамидные пути. Большая часть волокон пирамидного пути перекрещивается и переходит в боковой столб спинного мозга. Меньшая, неперекрещенная, часть переходит в передний столб спинного мозга. Конечной станцией двигательных произвольных импульсов, идущих по пирамидному пути, являются клетки передних рогов спинного мозга. В средней части продолговатого мозга лежат проприоцеп-тивные чувствительные пути от ядер Голля и Бурдаха; эти пути переходят на противоположную сторону. Кнаружи от них проходят волокна поверхностной чувствительности (температурной, болевой).

Наряду с чувствительными путями и пирамидным путем через продолговатый мозг проходят нисходящие эфферентные пути экстрапирамидной системы.

На уровне продолговатого мозга в составе нижней мозжечкой ножки проходят восходящие пути к мозжечку. Среди них основное место занимают спинно-мозжечковый, оливо-мозжечковый путь, коллатеральные волокна от ядер Голля и Бурдаха к мозжечку, волокна от ядер ретикулярной формации к мозжечку (рети кул ярно-мозжечковый путь). Спин но-мозжечковых пути два. Один идет к мозжечку через нижние ножки, второй – через верхние ножки.

В продолговатом мозге располагаются следующие центры: регулирующие сердечную деятельность, дыхательный и сосуд о-двигательный, тормозящие деятельность сердца (система блуждающего нерва), возбуждающие слезоотделение, секрецию слюнных, поджелудочных и желудочных желез, вызывающие выделение желчи и сокращение желудочно-кишечного тракта, т.е. центры, регулирующие деятельность пищеварительных органов. Сосудо – двигательный центр находится в состоянии повышенного тонуса.

Являющийся частью ствола мозга продолговатый мозг принимает участие в осуществлении простых и сложных рефлекторных актов. В выполнении этих актов участвуют также ретикулярная формация ствола мозга, система ядер продолговатого мозга (блуждающего, языко-глоточного, вестибулярного, тройничного), нисходящие и восходящие проводниковые системы продолговатого мозга.

Продолговатому мозгу принадлежит важная роль в регуляции дыхания, сердечно-сосудистой деятельности, которые возбуждаются как нервно-рефлекторными импульсами, так и химическими раздражителями, воздействующими на эти центры.

Дыхательный центр обеспечивает регуляцию ритма и частоту дыхания. Через периферический, спинальный центр дыхания он посылает импульсы непосредственно к дыхательным мышцам грудной клетки и к диафрагме. В свою очередь центростремительные импульсы, поступающие в дыхательный центр из дыхательных мышц, рецепторов легких и дыхательных путей, поддерживают его ритмическую деятельность, а также активность ретикулярной формации. Дыхательный центр тесно взаимосвязан с сердечно-сосудистым центром. Эта связь проявляется ритмичным замедлением сердечной деятельности в конце выдоха, перед началом вдоха – феномен физиологической дыхательной аритмии.

На уровне продолговатого мозга располагается сосудодвигатель-ный центр, который регулирует сужение и расширение сосудов. Сосудодвигательный и тормозящий деятельность сердца центры взаимосвязаны с сетевидной формацией.

Ядра продолговатого мозга принимают участие в обеспечении сложных рефлекторных актов (сосания, жевания, глотания, рвоты, чихания, моргания), благодаря которым осуществляется ориентировка в окружающем мире и выживание индивидуума. В связи с важностью этих функций системы блуждающего, языко-глоточного, подъязычного и тройничного нервов развиваются на самых ранних этапах онтогенеза. Даже при анэнцефалии (дети, которые рождаются без коры больших полушарий) сохраняются акты сосания, жевания, глотания. Сохранность этих актов обеспечивает выживаемость этих детей.

  1. Ретикулярная формация ствола мозга, ее функции.

  2. Роль ствола мозга в организации и регуляции движений.

  3. Статические и стато-кинетические рефлексы.

  4. Мозжечок, его структурная организация.

  5. Функции мозжечка.

  6. Афферентные и эфферентные связи мозжечка.

Афферентные и эфферентные связи мозжечка очень многочисленные. Мозжечок получает афферентные связи от вестибулярных ядер, соматосенсорные пути, главным образом от спинного мозга, нисходящие пути – в основном от коры головного мозга.

От спинного мозга к мозжечку подходят два спиномозжечковых пути – вентральный и дорсальный (Говерса и Кларка). В настоящее время выделяют приблизительно еще 10 трактов. Примерно половина из них, включая пути Говерса и Кларка, входят в мозжечок в виде мшистых волокон. Остальные же пути представляют собой спинооливарные тракты, которые, переключаясь на нейроны в оливах, посылают лиановидные волокна к коре мозжечка.  Все области коры больших полушарий, а также другие отделы го-ловного мозга посылают нисходящие пути к мозжечку. Большинство этих путей образуют синапсы в ядрах варолиева моста, волокна от которых идут к нео- или понтоцеребеллуму. Сигналы от двигательных зон коры больших полушарий поступают главным образом в промежуточную часть мозжечка, а импульсы от остальных корковых участков – к его полушариям. Эфферентные связи. Кора червя мозжечка посылает пути к ядру Шатра, средняя часть коры мозжечка (латеральнее червя) – к вставочному ядру, а кора полушарий мозжечка – к зубчатому ядру. Пути от каждого из этих ядер поступают к различным образованиям ствола мозга и больших полушарий. Таким образом, ядра мозжечка являются выходными структурами мозжечка.

  1. Симптомы поражения мозжечка.

Симптомы поражения мозжечка: нарушение равновесия тела в покое и при ходьбе, несоразмерность движений (гиперметрия); мимопопаданые, адиадохокинез (затруднение чередования противоположных движений),интенционный тремор, нистагм, расстройство речи - скандированная речь. Патогенетическая основа всех мозжечковых проявлений - нарушение согласованности в действиях мышц-антагонистов (асинергия).

При поражении червя мозжечка нарушаются синергии, стабилизирующие центр тяжести. Вследствие этого теряется равновесие, наступаеттуловищная атаксия, больной не может стоять (статическая атаксия);ходит, широко расставляя ноги, пошатываясь, что особенно отчетливо наблюдается при резких поворотах. При ходьбе наблюдается отклонение в сторону пораженной части мозжечка (гомолатерально).

При поражении полушарий мозжечка преобладают атаксия конечностей, интенционное дрожание, промахивание, гиперметрия (динамическая атаксия). Речь замедленная, скандированная. Выявляются мегалография(крупный с неровными буквами почерк) и диффузная гипотония мышц.

При патологическом процессе одного полушария мозжечка все эти симптомы развиваются на стороне поражения мозжечка (гомолатерально).

  1. Черная субстанция, ее функции.

Черное вещество принадлежит к экстрапирамидной системе и, как и другие древние центры управления движениями среднего мозга ( красное ядро , верхние холмики четверохолмия и ретикулярная формация среднего мозга ), ответственно за тонус мышц и бессознательные, автоматические движения.

ЧЁРНАЯ СУБСТАНЦИЯ - составная часть паллидарной системы, входящей в составе стриопаллидума в экстрапирамиую систему. Ч. с. рас положена в ножках мозга, имеет тесные связи с различными отделами коры больших полушарий, с полосатым телом, бледным шаром и ретикулярной формацией; вместе с красными ядрами и ретикулярной формацией участвует в регуляции тонуса мышц, в т.ч. голосового и артикуляционного аппаратов, в выполнении точных и тонких движений пальцев рук; имеет отношение к координации актов глотания и жевания. Поражение Ч. с. вызывает повышение пластического мышечного тонуса

  1. Красное ядро, его функции.

  2. Функциональная организация ядер таламуса

  Ядра таламуса (зрительного бугра) - это парные анатомические образования, расположенные в белом веществе таламуса. Они представляют собой скопления нервных клеток, образующих достаточно четко отграниченную массу серого вещества таламуса. Таламус содержит серое вещество, состоящее из скоплений нейронов. Эти скопления нейронов образуют ядра таламуса. Ядра разделены тонкими прослойками белого вещества.       Исследовано около 40 ядер таламуса. Основными ядрами являются передние, nuclei anteriores (схема, п. 3), медиальные, nuclei mediates (схема, п. 7), задние, nuclei posteriores (схема, п. 2). С нейронами ядер таламуса вступают в контакт отростки вторых нейронов, образующих все чувствительные проводящие пути (за исключением обонятельного, вкусового и слухового). В связи с этим таламус фактически является подкорковым чувствительным центром. Одна совокупность отростков нейронов таламуса направляется к ядрам полосатого тела конечного мозга. В связи с этим таламус рассматривается как чувствительный центр экстрапирамидной системы). Другая совокупность отростков нейронов таламуса составляет - таламокортикальные пучки, fasciculi thalamocorticales, направляющиеся к коре больших полушарий головного мозга.

  1. Функции ядер таламуса.

Ядра таламуса функционально по характеру входящих и выхо­дящих из них путей делятся на специфические, неспецифические и ассоциативные.

 

К специфическим ядрам относятся переднее вентральное, меди­альное, вентролатеральиое, постлатеральное, постмедиальное, лате­ральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно.

 

Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении ин­формации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

 

От специфических ядер информация о характере сенсорных сти­мулов поступает в строго определенные участки III—IV слоев коры большого мозга (соматотопическая локализация). Нарушение фун­кции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвер­гируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.

 

Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию.

 

В медиальное коленчатое тело (МТК) поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферетные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры. МКТ имеет четкую тонотопичность. Следовательно, уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей.

 

Ассоциативные ядра таламуса представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное — с лобной долей коры, латеральное дорсальное — с теменной, подушка — с ассоциативными зонами теменной и височной долями коры большого мозга.

 

Основными клеточными структурами этих ядер являются мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изме­няет активность только при одновременном комплексном раздраже­нии. На полисенсорных нейронах происходит конвергенция возбуж­дений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Нейроны подушки связаны главным образом с ассоциативными зонами те­менной и височной долей коры большого мозга, нейроны латераль­ного ядра — с теменной, нейроны медиального ядра — с лобной долей коры большого мозга.

 

Неспецифические ядра таламуса представлены срединным цент­ром, парацентральным ядром, центральным медиальным и лате­ральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и цен­тральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса.

 

Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свиде­тельствующей о развитии сонного состояния. Нарушение функции неспецифических ядер затрудняет появление веретенообразной ак­тивности, т. е. развитие сонного состояния.

  1. Связи таламуса с другими структурами мозга, их значение.

  2. Структурно-функциональная организация гипоталамуса.

  3. Функции различных ядер гипоталамуса.

  4. Гипоталамус как высший подкорковый вегетативный центр.

  5. Структурно-функциональная организация подкорковых ядер.

  6. Функции бледного шара и хвостатого ядра.

  7. Нисходящие и восходящие влияния стриопаллидарной системы.

  8. Роль подкорковых ядер в регуляции соматических и вегетативных функций.

  9. Строение коры больших полушарий головного мозга.

  10. Локализация функций в коре больших полушарий.

  11. Роль коры больших полушарий в организации и регуляции движений.

  12. Понятие о пирамидной и экстрапирамидной системах мозга.

  13. Функции пирамидной системы.

  14. Функции экстрапирамидной системы.

  15. Лимбическая система, ее функции.

  16. Цереброспинальная жидкость, ее состав и функции.

  1. Понятие о гематоэнцефалическом барьере.

  2. Методы исследования функции ЦНС.

  3. Электроэнцефалография, характеристики ЭЭГ.

  4. Стериотаксическая методика, области ее применения.

  5. Понятие о вегетативной нервной системе.

  6. Функциональное строение вегетативной нервной системы.

  7. Строение и функции симпатического отдела ВНС.

  8. Строение и функции парасимпатического отдела ВНС.

  9. Метасимпатический отдел ВНС, его функции.

  10. Рецепторы и медиаторы вегетативной нервной системы.

  11. Вегетативные рефлексы, их значение.

  12. Методы исследования и способы оценки вегетативных реакций.

  13. Понятие об эндокринной системе, ее организация.

  14. Общие принципы эндокринной регуляции функций организма.

  15. Виды гормонов, особенности их действия.

  1. Механизмы действия гормонов.

  2. в"иды действия гормонов.

  3. Понятие о гипоталамо-гипофизарной системе.

  4. Гормоны аденогипофиза, их функции.

  5. Гормоны промежуточной доли гипофиза, их функции.

  6. Гормоны, секретируемые нейрогипофизом, их функции.

  7. Щитовидная железа, гормоны, их функции.

  8. Паращитовидные железы, гормоны, их функции. .108. Эндокринная функция поджелудочной железы.

  1. Гормоны коркового слоя надпочечников, их функции.

  2. Гормоны мозгового слоя надпочечников, их функции.

  3. Мужские половые гормоны, их функции.

  4. Женские половые гормоны, их функции.

  5. Гормоны неэндокринных органов, их функции.

  6. Общие принципы регуляции работы эндокринных желез.

  7. Механизмы регуляции деятельности сердца.

Закон сердца

* Формулировка:сила сокращения желудочков сердца прямо пропорциональна длине их мышечных волокон перед сокращением.

* Механизмы: число актомиозиновых мостиков наиольшее при растяжении саркомера на 10% длины покоя; растжение через механочувствительные Са каналы стимулирует выход Са из гладкой ЭПС.

*Физиологический смысл : закон сердца- приспособление сердца к преднагрузке:увеличение притока крови при физической работеЮмобилизации крови из депо,горизонтальном положении тела и др.

Феномен Анрепа

*Формалировк:сила сокращения левого желудочка прямо пропорциональна повышению давления в аорте.

*Механизмы: 1)повышение АД в аорте увеличивает коронарный кровоток, улучшает метаболизм сердца и силу его сокращений.2) повышение АД в аорте приводит к повышению конечнодиастолического давления

Эффект лестницы

* ф-ка: при повышении частоты сокращения сердца увеличивается и сила его сокращения.Связано сс накоплением кальция в гиалоплазме.

  1. Механизмы нервной экстракардиальной регуляции деятельности сердца.

Влияние экстракардиальной нервной системы. Симпатические и парасимпатические экстракардиальные нервы вместе с интракардиальным нервными волокнами участвуют в рефлекторной регуляции работы сердца. Волокна правого блуждающего нерва иннервируют преимущественно правое предсердие и особенно щедро - синоатриальная узел. Левый блуждающий нерв доходит до атриовентрикулярного узла и рабочего миокарда. Симпатичные постганглионарные волокна иннервируют как ведущую систему, так и рабочий миокард всех отделов. Нервные окончания особенно густо оплитають клетки проводящей системы сердца. Кроме настоящих нервно-мышечных синапсов, в миокарде есть тончайшие терминале с многочисленными варикозными утолщениями. Терминале стелятся вдоль мышечных волокон, опутывают их и прилегающие с различной плотностью к поверхности клетки, образуя тем самым большую площадь контакта. Причем окончания симпатических и парасимпатических нервов тесно переплетены, и их медиаторы могут осуществлять модулирующий эффект на выделение друг друга. Благодаря особенности иннервации симпатические нервы действуют на функции проводящей системы (хронотропные, батмотропный и дромотропного) и сократимость кардиомиоцитов (инотропный влияние). Симпатические нервы оказывают на сердце и трофическое влияние. Воздействие правого блуждающего нерва сказывается преимущественно на хронотропный функции сердца (ЧСС), а левого - на атриовентрикуляторному проведении (дромотропное действие) и на инотропного эффекта "кардиомиоцитов. Влияние нервных импульсов на миокард определяется характером медиатора. Медиатором парасимпатических нервов является ацетилхолин, симпатичных - норадреналин. Механизм действия их рассмотрена. Импульсы парасимпатических нервов оказывают негативные батмотропный (снижение возбудимости), хронотропный (замедление ритма сердечных сокращений), дромотропный (ухудшение проводимости возбуждения сердцем) и инотропный (уменьшение амплитуды сокращения) эффекты. При сильном раздражении парасимпатического нерва (блуждающего) не только тормозится работа сердца, но и может наступить остановка его диастоле. Механизм ее связан с гиперполяризацией мембран миокарда. Длительное раздражение блуждающего нерва приводит к прекращению влияния его на сердце, вследствие чего сокращение восстанавливаются. Это явление называют ускользания сердца из-под влияния блуждающего нерва. Симпатическая нервная система, наоборот, усиливает все указанные функции сердца: развиваются положительные Батма-, хроно-, дромо-и инотропный эффекты. При раздражении симпатических нервных волокон ускоряется спонтанная деполяризация клеток - водителей ритма в диастолу, что ведет к ускорению сердечных сокращений. Увеличивается амплитуда потенциала действия. И. П. Павловым доказано, что существуют симпатические нервные волоконца, которые усиливают сердечные сокращения без изменения ритма. Ученый назвал усилителями сердечной деятельности. Назначение их, по мнению И. П. Павлова, заключается в выполнении трофической функции в сердце путем стимуляции процессов обмена веществ.

  1. Механизмы гуморальной регуляции деятельности сердца.

Факторы гуморальной регуляции делят на две группы:

1) вещества системного действия;

2) вещества местного действия.

К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное влияние на работу сердца. При избытке Ca может произойти остановка сердца в момент систолы, так как нет полного расслабления. Ионы Na способны оказывать умеренное стимулирующее влияние на деятельность сердца. Ионы K в больших концентрациях оказывают тормозное влияние на работу сердца вследствие гиперполяризации.

Гормон адреналин увеличивает силу и частоту сердечных сокращений.

Тироксин (гормон щитовидной железы) усиливает работу сердца.

Минералокортикоиды (альдостерон) стимулируют реабсорбцию Na и выведение K из организма.

Глюкагон повышает уровень глюкозы в крови за счет расщепления гликогена, приводя к положительному инотропному эффекту.

Половые гормоны в отношении к деятельности сердца являются синергистами и усиливают работу сердца.

Вещества местного действия действуют там, где вырабатываются.

Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным.

Миогенный тонус возникает, когда некоторые глад-комышечные клетки сосудов начинают спонтанно генерировать нервный импульс. Возникающее возбуждение распространяется на другие клетки, и происходит сокращение.

Нервный механизм возникает в гладкомышечных клетках сосудов под влиянием импульсов из ЦНС.

В настоящее время выделяют три механизма регуляции сосудистого тонуса – местный, нервный, гуморальный.

Ауторегуляция обеспечивает изменение тонуса под влиянием местного возбуждения. Этот механизм связан с расслаблением и проявляется расслаблением гладкомышечных клеток. Существует миогенная и метаболическая ауторегуляция.

Нервная регуляция осуществляется под влиянием вегетативной нервной системы, осуществляющей действие как вазоконстриктора, так и вазодилататора.

Сосудорасширяющие нервы могут быть различного происхождения:

1) парасимпатической природы;

2) симпатической природы;

3) аксон-рефлекс.

Гуморальная регуляция осуществляется за счет веществ местного и системного действия.

К веществам местного действия относятся ионы Ca, Na, Cu.

  1. Понятие о сосудодвигательном центре, его строение.

Центр Сосудодвигательный

(vasomotor centre) - скопление нервных клеток в продолговатом мозге, которые получают информацию от барорецепторов кровеносной системы, вызывая рефлекторные изменения частоты сердечных сокращений и просвета кровеносных сосудов, в результате чего у человека соответствующим образом изменяется артериальное давление. Кроме того, в сосудодвигательный центр головного мозга могут поступать и другие импульсы, так что сильные эмоции (например, страх) также могут воздействовать на частоту сердечных сокращений и кровяное давление. Деятельность этого центра осуществляется через сосудодвигательные нервы симпатической и парасимпатической нервной системы.

г

В.И. Комиссаров

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]