Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по нейрофизиологии..docx
Скачиваний:
5
Добавлен:
28.09.2019
Размер:
1.27 Mб
Скачать

4. Виды рецепторов

Рецепторы делят на внешние, или экстероцепторы, и внутренние, или интерорецепторы. Экстероцепторы расположены на внешней поверхности тела животного или человека и воспринимают раздражения из внешнего мира (световые, звуковые, термические и др.). Интероцепторы находятся в различных тканях и внутренних органах (сердце, лимфатические и кровеносные сосуды, лёгкие и т.д.); воспринимают раздражители, сигнализирующие о состоянии внутренних органов (висцероцепторы), а также о положении тела или его частей в пространстве (вестибулоцепторы). Разновидность интероцепторов -- проприорецепторы, расположенные в мышцах, сухожилиях и связках и воспринимающие статическое состояние мышц и их динамику. В зависимости от природы воспринимаемого адекватного раздражителя различают механорецепторы, фоторецепторы, хеморецепторы, терморецепторы и др. У дельфинов, летучих мышей и ночных бабочек обнаружены рецепторы, чувствительные к ультразвуку, у некоторых рыб -- к электрическим полям. Менее изучен вопрос о существовании у некоторых птиц и рыб рецепторов, чувствительных к магнитным полям. Мономодальные рецепторы воспринимают раздражения только одного рода (механическое, световое или химическое); среди них -- рецепторы, различные по уровню чувствительности и отношению к раздражающему стимулу. Так, фоторецепторы позвоночных подразделяются на более чувствительные палочковые клетки, функционирующие как рецепторы сумеречного зрения, и менее чувствительные колбочковые клетки, обеспечивающие у человека и ряда животных дневное светоощущение и цветовое зрение; механорецепторы кожи -- на более чувствительные фазные рецепторы реагирующие только на динамическую фазу деформации, и статические, реагирующие и на постоянную деформацию, и т.д. В результате такой специализации рецепторы выделяются наиболее значительные свойства стимула и осуществляется тонкий анализ воспринимаемых раздражений. Полимодальные рецепторы реагируют на раздражения разного качества, например химическое и механическое, механическое и температурное. При этом закодированная в молекулах специфическая информация передаётся в центральную нервную систему по одним и тем же нервным волокнам в виде нервных импульсов, подвергаясь на своём пути неоднократному энергетическому усилению. Исторически сохранилось деление рецепторов на дистантные (зрительные, слуховые, обонятельные), воспринимающие сигналы от источника раздражения, находящегося на некотором расстоянии от организма, и контактные -- при непосредственном соприкосновении с источником раздражения. Различают также рецепторы первичные (первичночувствующие) и вторичные (вторичночувствующие). У первичных рецепторов субстрат, воспринимающий внешнее воздействие, заложен в самом сенсорном нейроне, который непосредственно (первично) возбуждается раздражителем. У вторичных рецепторах между действующим агентом и сенсорным нейроном располагаются дополнительные, специализированные (рецептирующие) клетки, в которых преобразуется (трансформируется) в нервные импульсы энергия внешних раздражений.

Обнаружение сигналов начинается в рецепторе — окончании дендрита или в специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. По характеру ощущений, возникающих при их раздражении, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные — возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

 В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

42 Принципы кодирования информации в ЦНС.

Принципы кодирования информации в нервной системе

Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и характерны для периферического уровня обработки информации, другие — более сложны и характеризуют передачу информации на более высоких уровнях нервной системы, включая кору.

Одним из простых способов кодирования информации признается специфичность рецепторов, избирательно реагирующих на определенные параметры стимуляции, например колбочки с разной чувствительностью к длинам волн видимого спектра, рецепторы давления, болевые, тактильные и др.

Другой способ передачи информации получил название частотного кода. Наиболее явно он связан с кодированием интенсивности раздражения. Частотный способ кодирования информации об интенсивности стимула, включающего операцию логарифмирования, согласуется с психофизическим законом Г. Фехнера о том, что величина ощущения пропорциональна логарифму интенсивности раздражителя.

Однако позже закон Фехнера был подвергнут серьезной критике. С. Стивене на основании своих психофизических исследований, проведенных на людях с применением звукового, светового и электрического раздражения, взамен закона Фехнера предложил закон степенной функции. Этот закон гласит, что ощущение пропорционально показателю степени стимула, при этом закон Фехнера представляет лишь частный случай степенной зависимости.

Анализ передачи сигнала о вибрации от соматических рецепторов показал, что информация о частоте вибрации передается с помошью частоты, а ее интенсивность кодируется числом одновременно активных рецепторов.

В качестве альтернативного механизма к первым двум принципам кодирования — меченой линии и частотного кода — рассматривают также паттерн ответа нейрона. Устойчивость временного паттерна ответа — отличительная черта нейронов специфической системы мозга. Система передачи информации о стимулах с помощью рисунка разрядов нейрона имеет ряд ограничений. В нейронных сетях, работающих по этому коду, не может соблюдаться принцип экономии, так как он требует дополнительных операций и времени по учету начала, конца реакции нейрона, определения ее длительности. Кроме того, эффективность передачи информации о сигнале существенно зависит от состояния нейрона, что делает данную систему кодирования недостаточно надежной.

Идея о том, что информация кодируется номером канала, присутствовала уже в опытах И.П. Павлова с кожным анализатором собаки. Вырабатывая условные рефлексы на раздражение разных участков кожи лапы через «касалки», он установил наличие в коре больших полушарий соматотопической проекции. Раздражение определенного участка кожи вызывало очаг возбуждения в определенном локусе соматосенсорной коры. Пространственное соответствие места приложения стимула и локуса возбуждения в коре получило подтверждение и в других анализаторах: зрительном, слуховом. Тонотопическая проекция в слуховой коре отражает пространственное расположение волосковых клеток кортиевого органа, избирательно чувствительных к различной частоте звуковых колебаний. Такого рода проекции можно объяснить тем, что рецепторная поверхность отображается на карте коры посредством множества параллельных каналов — линий, имеющих свои номера. При смещении сигнала относительно рецепторной поверхности максимум возбуждения перемещается по элементам карты коры. Сам же элемент карты представляет локальный детектор, избирательно отвечающий на раздражение определенного участка рецепторной поверхности. Детекторы локальности, обладающие точечными рецептивными полями и избирательно реагирующие на прикосновение к определенной точке кожи, являются наиболее простыми детекторами. Совокупность детекторов локальности образует карту кожной поверхности в коре. Детекторы работают параллельно, каждая точка кожной поверхности представлена независимым детектором.

Сходный механизм передачи сигнала о стимулах действует и тогда, когда стимулы различаются не местом приложения, а другими признаками. Появление локуса возбуждения на детекторной карте зависит от параметров стимула. С их изменением локус возбуждения на карте смещается. Для объяснения организации нейронной сети, работающей как детекторная система, Е.Н. Соколов предложил механизм векторного кодирования сигнала.

Принцип векторного кодирования информации впервые был сформулирован в 50-х годах шведским ученым Г. Йохансоном, который и положил начало новому направлению в психологии — векторной психологии. Г. Йохансон основывался на результатах летапьного изучения восприятия движения. Он показал, что если две точки на экране движутся навстречу друг другу — одна по горизонтали, другая по вертикали, — то человек видит движение одной точки по наклонной прямой. Для объяснения эффекта иллюзии движения Г. Йохансон использовал векторное представление. Движение точки рассматривается им как результат формирования двухкомпонентного вектора, отражающего действие двух независимых факторов (движения в горизонтальном и вертикальном направлениях). В дальнейшем векторная модель была распространена им на восприятие движений корпуса и конечностей человека, а также на движение объектов в трехмерном пространстве. Е.Н Соколов развил векторные представления, применив их к изучению нейронных механизмов сенсорных процессов, а также двигательных и вегетативных реакций.

Векторная психофизиология — новое направление, ориентированное на соединение психологических явлений и процессов с векторным кодированием информации в нейронных сетях.

43 Механизмы распространения возбуждения в ЦНС.

Особенности распространения возбуждения в ЦНС

Всем нам хорошо известно, что электрический сигнал передается от нейрона к нейрону с помощью синапса. Однако, это весьма упрощенный механизм передачи и, как показывают исследования нейрофизиологов, передача возбуждения в ЦНС обладает рядом специфических свойств, без которых невозможна нормальная нервная деятельность.

Свойства нервной системы можно рассматривать на уроне нервных центров. Нервный центр - совокупность нервных клеток, более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса или другого вида нервной деятельности. Основными свойствами передачи возбуждения являются:

· одностороннее проведение возбуждения;

· задержка проведения возбуждения;

· суммация возбуждений;

· трансформация ритма возбуждений;

· рефлекторное последействие;

· быстрая утомляемость.

· облегчение проведения

· иррадиация

· торможение возбуждения

Одностороннее проведение возбуждения в центральной нервной системе обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении - от нервного окончания, выделяющего медиатор, к постсинаптической мембране.

Задержка проведения возбуждения в нервных центрах связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает при длительном раздражении рецепторов слизистой оболочки носа.

Трансформация ритма. Нервные центры способны изменять ритм поступающих к ним импульсов. Они могут на одиночные раздражители отвечать серией импульсов или на раздражители небольшой частоты - возникновением более частых ПД. В результате ЦНС посылает к рабочему органу количество импульсов, относительно независимое от частоты раздражений. Это связано с тем, что нейрон является изолированной единицей нервной системы, к нему в каждый момент приходит множество раздражений. Под их влиянием происходит изменение мембранного потенциала клетки. Если создается небольшая, но продолжительная деполяризация (длительный ВПСП), то при этом один стимул вызывает серию импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в секунду. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный, период. Это явление получило название рефлекторного последействия. Оно проявляется в том, что после прекращения раздражения афферентных нервов по эфферентным путям от ЦНС продолжают следовать импульсы к рабочему органу, вследствие чего рефлекторная реакция некоторое время сохраняется и после выключения раздражения. Последействие зависит от силы раздражения.

Нервные центры легко утомляемы в отличие от нервных волокон. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.

Облегчение проведения, или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название облегчения. Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации ВПСП быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия.

Иррадиация. При возбуждении нейронов н.ц. биоэлектрические импульсы распространяются по коллатералям, вызывая активацию соседних центров. Это явление получило название «иррадиация». В результате при раздражении одного рецепторного поля нередко возникает генерализованная реакция, в которую вовлекаются эффекторы, контролируемые различными нервными центрами

Одним из самых важных процессов, сопровождающих возбуждение в ЦНС, является процесс торможения. Торможение в центральной нервной системе -- активный процесс, проявляющийся внешне в подавлении или в ослаблении процесса возбуждения и характеризующийся определенной интенсивностью и длительностью. Торможение в норме неразрывно связано с возбуждением, является его производным, сопутствует возбудительному процессу, ограничивая и препятствуя чрезмерному распространению последнего. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и заторможенных зон в центральных нервных структурах. Формирующий эффект тормозного процесса развивается в пространстве и во времени. Торможение -- врожденный процесс, постоянно совершенствующийся в течение индивидуальной жизни организма. При значительной силе фактора, вызвавшего торможение, оно может распространяться на значительное пространство, вовлекая в тормозной процесс большие популяции нервных клеток. История развития учения о тормозных процессах в центральной нервной системе начинается с открытия И. М. Сеченовым эффекта центрального торможения (химическое раздражение зрительных бугров тормозит простые спинномозговые безусловные реакции). Вначале предположение о существовании специфических тормозных нейронов, обладающих способностью оказывать тормозные влияния на другие нейроны, с которыми имеются синаптические контакты, диктовалось логической необходимостью для объяснения сложных форм координационной деятельности центральных нервных образований. Впоследствии это предположение нашло прямое экспериментальное подтверждение (Экклс, Реншоу), когда было показано существование специальных вставочных нейронов, имеющих синаптические контакты с двигательными нейронами. Активация этих вставочных нейронов закономерно приводила к торможению двигательных нейронов. В зависимости от нейронного механизма, способа вызывания тормозного процесса в ЦНС различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное. Постсиналтическое торможение -- основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптическую щель тормозной медиатор. Тормозной эффект таких нейронов обусловливается специфической природой медиатора -- химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Химическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических потенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации распространяющихся ПД. Возвратным торможением называется угнетение (подавление) активности нейрона, вызываемое возвратной коллатералью аксона нервной клетки. Так, мотонейрон переднего рога спинного мозга прежде чем покинуть спинной мозг дает боковую (возвратную) ветвь, которая возвращается назад и заканчивается на тормозных нейронах (клетки Реншоу). Аксон последней заканчивается на мотонейронах, оказывая на них тормозное действие. Пресинаптическое торможение развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Пресинаптическое торможение часто выявляется в структурах мозгового ствола, в спинном мозге. Пессимальное торможение представляет собой вид торможения центральных нейронов. Оно наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения. Через некоторое время стимулируемый центральный нейрон, работая в таком режиме, переходит в состояние торможения.

Еще одной важной особенностью передачи возбуждения в ЦНС является участие в этом процессе клеток нейроглии или клеток - спутниц. Ранее считалось, что эти клетки выполняют роль хелперов, помогая в трансформации питательных веществ к нейронам. Однако последние исследования показали, что клетки глии принимают непосредственное участие в передачи нервного импульса в синапсе.Вот один из примеров влияния нейроглиальных клеток. Астроциты регулируют синаптическую передачу сигнала несколькими способами. Аксон передает нервный сигнал дендриту за счет выброса нейротрансмиттера (обозначен зеленым цветом) - в данном случае глутамата. Кроме того, аксон высвобождает АТФ (желтый). Эти соединения вызывают перемещение кальция (фиолетовый) внутрь астроцитов, что побуждает их вступить в общение друг с другом за счет высвобождения собственного АТФ. Астроциты могут усилить передачу нервного сигнала с помощью выброса такого же нейротрансмиттера (глутамата) или ослабить сигнал путем поглощения нейротрансмиттера или выброса связывающих его белков (синие). Кроме того, астроциты могут выделить сигнальные молекулы (красные), которые заставят аксон увеличить или уменьшить выброс нейротрансмиттера, когда он возобновит импульсацию. Модификация связей между нейронами - один из способов, с помощью которых головной мозг корректирует свои реакции на раздражители по мере накопления опыта - так происходит процесс обучения. В периферической нервной системе синапсы окружены не астроцитами, а шванновскими клетками

И это еще не самое поразительное. Оказалось, что глиальные клетки также способны к передачи сигналов, но в отличие от нейронов, «общение» клеток нейроглии идет по другому механизму. Клетки нейроглии также могут производить контроль над передачей в синапсе, уменьшая или увеличивая концентрацию нейромедиатора в синаптической щели. Чтобы это доказать было проведено огромное количество экспериментов. Вот один зи них. Ришар Робитайль (Richard Robitaille) из Монреальского университета обнаружил, что величина электрического потенциала, возникающего в мышце лягушки под влиянием стимуляции синапса, увеличивалась или уменьшалась в зависимости от того, какие химические вещества он вводил в шванновские клетки, окружающие этот синапс. Подобные изменения эффективности синапсов ученые рассматривают в качестве главного фактора пластичности нервной системы, т.е. ее способности изменять реакции на основании прошлого опыта, и глия, таким образом, может играть важную роль в клеточных процессах обучения и памяти

В процессе изучения механизмов работы мозга, в особенности нейронных процессов запоминания и мышления, ученые-нейрофизиологи пришли к выводу, что многообразие выполняемых мозгом функций невозможно объяснить на клеточном уровне - как бы сложен не был нейрон, он не может обеспечить мозгу полную функциональность. Так родилась идея о том, что в мозгу существуют иерархические системы нейронов, которые получили название нейронных сетей. Главным постулатом теории нейронных сетей можно считать идею синергетики: « Целое есть нечто иное, чем просто сумма элементов, это взаимодействие, приводящее к образованию новых качеств » Другими словами, нейроны, объединяясь между собой приобретают дополнительные возможности. Концепция организации и самоорганизации в строении и функций нервной системы получила наибольшее развитие в представлениях о модульной (ансамблевой) конструкции нервной системы как принципиальной основы построения функциональных систем мозга.

Образования головного мозга состоят из повторяющихся локальных нейронных сетей, модулей, которые варьируют от структуры к структуре по числу клеток, внутренним связям и способу обработки информации. Каждый модуль, или нейронный ансамбль, представляет собой совокупность локальных нейронных сетей, которая обрабатывает информацию, передает ее со своего входа на выход, подвергает трансформации, определяемой общими свойствами структуры и ее внешними связями. Один модуль может входить в состав различных функциональных образований. Группирование нейронов в ансамбли нервных клеток для совместного выполнения функций следует рассматривать как проявление кооперативного способа деятельности. Основным функциональным признаком ансамблевой организации является локальный синергизм реакций нейронов центральной ядерной структуры ансамбля, окруженной зоной заторможенных и нереагирующих нейронов (А. Б. Коган, О. Г. Чораян). Размеры группировок нейронов в горизонтальной плоскости в среднем достигают диаметра 100--150 мкм, что соответствует размерам клеточных объединений, выявляемых по функциональным показателям синергичности возбудительных реакций на адекватное раздражение их рецептивных полей. Размеры зоны синаптических окончаний вторичного специфического афферентного волокна в корковых структурах (100--150 мкм) близок к пространственным характеристикам элементарного нейронного ансамбля. Примерно такие же размеры имеет и сфера терминальных разветвлений отдельного неспецифического волокна, но общая зона всех ветвей неспецифического волокна образует сферу диаметром 600-- 700 мкм, что соответствует размерам зоны ветвления первичного специфического афферентного волокна. Схема активации нейронного ансамбля может быть представлена следующим образом.

Сигналы, поступающие по первичным специфическим и неспецифическим афферентам, активируют вначале обширную зону, вовлекая в процесс возбуждения группу нейронных ансамблей. Более дробная конфигурация нейронных группировок в зоне диаметром 100--150 мкм формируется под влиянием вторичных афферентных волокон, несущих сигналы внутрицентрального взаимодействия. Из множества элементарных нейронных ансамблей образуется центральная мозаика активности, определяющая постоянно меняющийся «узор» возбуждения и торможения в нервном центре.

Таким образом, ансамблевая конструкция центральных проекционных зон анализатора в коре большого мозга представляется как результат двух физиологических механизмов:

1) мощной активации большой зоны центральных нейронов, связанных с терминалами афферентных волокон;

2) центральными нейронами, в функциональном отношении аналогичными клеткам Реншоу в спинном мозге, препятствующими широкому растеканию центрального возбуждения путем формирования тормозной каемки вокруг возбужденных нервных клеток.

Разнообразие «узоров» возбуждения и торможения в центральной мозаике нейрональной активности формируется из элементарных микроочагов возбуждения, которые образуют фундамент иерархической конструкции клеточных систем мозга. Принципиальным моментом ансамблевой концепции работы мозга является утверждение, что на каждом этапе переработки информации в качестве функциональной единицы выступает не отдельно взятая нервная клетка, а внутренне интегрированное клеточное объединение -- нейронный ансамбль, основными характеристиками которого является: а) локальный синергизм реакции нейронов центральной зоны; б) наличие тормозной окантовки, образованной клетками с тормозными реакциями на данное раздражение, окружающими центральную зону клеток с возбудительными реакциями; в) наличие определенного числа нейронов со стабильными ответами (обычно они расположены в центральной ядерной зоне ансамбля) при значительно большем числе клеток с вариабельными параметрами импульсного ответа на адекватное афферентное раздражение.

Элементарные нейронные ансамбли как функциональные единицы рабочих механизмов мозга играют роль своего рода «кирпичиков», из которых формируются более сложные блоки и конструкции мозга. Наблюдающаяся структурная и функциональная избыточность ансамблевой модульной конструкции центральных нервных образований как следствие ансамблевой организации ассоциируется со значительной информационной избыточностью сенсорных посылок, распространяющихся по нейронным системам мозга. Избыточность нейронных элементов и межнейронных связей в ансамбле -- характерная черта структурно-функциональной организации центральных нервных образований -- приводит к мультифункциональности, которой обусловлены пластичность и высокие компенсаторные способности нервных механизмов.

Когда индивидуальное участие нейрона в данной реакции становится не обязательным, а вероятностным и возможна относительная взаимозаменяемость элементов, повышаются надежность нервного механизма управления и связи в организме. Подвижная динамическая структура нейронных ансамблей, формируемая вероятностным участием в них отдельных нервных клеток, обусловливает большую гибкость и легкость перестроек межнейронных связей; эти перестройки объясняют высокую пластичность, характерную для нервных механизмов высших отделов мозга. Вероятностные нейронные ансамбли образуются структурно-функциональными блоками нервных клеток, воспринимающих и перерабатывающих идентичную афферентную информацию. Эти ансамбли составляют основу функциональной мозаики процессов центрального возбуждения и торможения. Мозаика вероятностных нейронных ансамблей на всех уровнях конструкции нервного контура управления, обеспечивающего разные формы целенаправленного поведения, образует функциональную систему мозга. Нейрокибернетика (кибернетика нервной системы) -- наука, изучающая процессы управления и связи в нервной системе.

Такое определение предмета и задач кибернетики нервной системы позволяет выделить три составных компонента (раздела) ее: организация, управление и информационная деятельность. В сложных полифункциональных интегративных системах мозга невозможно раздельное функционирование элементов организации, управления и информационной деятельности, они тесно связаны и взаимообусловлены. Организация нервной системы во многом предопределяет механизмы управления и эффективности передачи и переработки информации. Управление модифицирует механизмы организации и самоорганизации, обеспечивает эффективность и надежность информационной функции системы. Информационная деятельность является обязательным условием совершенствования процесса организации, управления как оперативный прием эффективного воздействия и целенаправленного видоизменения. Организация. В центре внимания теории организации и самоорганизации в нейрокибернетике лежит представление о системных свойствах конструкций мозга на разных морфологических и эволюционных уровнях конструкции нервной системы. Ведущим свойством системы является организация. Система -- совокупность элементов, где конечный результат кооперации проявляется не в виде суммы эффектов составляющих элементы, а в виде произведения эффектов, т. е. системность как характерное свойство организованной сложности предполагает неаддитивное сложение функций отдельных компонентов.

Объединение двух и более элементов в системе рождает новое качество, которое не может быть выражено через качество составляющих компонентов. Отдельный нейрон является носителем свойств, позволяющих ему интегрировать влияние других нейронов, строить свою активность на основании оценки результатов интеграции. С другой стороны, на основе таких свойств происходит объединение индивидуальных нейронов в системы, обладающие новыми свойствами, отсутствующими у входящих в их состав единиц. Характерной чертой таких систем является то, что активность каждого составного элемента в них определяется не только влияниями, поступающими по прямым афферентным путям каждого элемента, но и состоянием других элементов системы. Свойство системности в нервных образованиях возникает тогда, когда деятельность каждой нервной клетки оказывается функцией не только непосредственно поступившего к ней сигнала, но и функцией тех процессов, которые происходят в остальных клетках нервного центра (П. Г. Костюк). Оптимальная организация нервных конструкций обычно сочетается со значительной структурой или функциональной избыточностью, которой принадлежит решающая роль в обеспечении пластичности и надежности биологической системы.

У нейронных сетей много важных свойств, но ключевое из них - это способность к обучению. Обучение нейронной сети в первую очередь заключается в изменении «силы» синаптических связей между нейронами. Следующий пример наглядно это демонстрирует. В классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик. Собака достаточно быстро научилась ассоциировать звонок колокольчика с приемом пищи. Это явилось следствием того, что синаптические связи между участками головного мозга, ответственными за слух и слюнные железы, усилились. И в последующем возбуждение нейронной сети звуком колокольчика, стало приводить к более сильному слюноотделению у собаки.

Теория нейронных сетей получила огромное практическое применение. Особо важное отражение данная теория получила в области математического и компьютерного моделирования. Были созданы программы, имитирующие искусственный интеллект и обладающие поистине невероятной вычислительной способностью. Чтобы оценить многообразие сфер применения данных программ приведу заголовки статей по данной теме:«Применение нечетких нейронных сетей для решения задач технологического проектирования», «Идентификация по биометрическим параметрам при использовании аппарата нейронных сетей», «Применение нейронных сетей в нелинейных задачах обработки навигационной информации», «исследование применимости аппарата нейронных сетей для задач бизнес-прогнозирования». И это далеко не все.

44 Понятие о нервном центре.

Нервный центр – это совокупность нейронов, расположенных на различных этажах цнс и отвечающих за выполнение какой-либо функции.

В нервном центре выделяют главную часть или ядро, представляющее собой группу нейронов, которые являются необходимыми и достаточными для обеспечения данной функции. Характеризуются высокоспециализированными нейронами рабочие отделы головного мозга, как правило, в продолговатом мозге.

Нервный центр имеет вспомогательные части в различных отделах цнс, от коры до спинного мозга.

Нервным центром называют совокупность нейронов,  участвующих в реализации определенного рефлекса, регуляции той или иной функции или осуществлении сложного поведенческого акта. Не следует понимать нервный центр как что-то узко локализованное в одном участке ЦНС. Клетки одного нервного центра могут быть расположены в разных отделах ЦНС. Понятие анатомическое по отношению к нервному центру рефлекса неприменимо потому, что в осуществлении любого сложного рефлекторного акта принимает участие всегда целая констелляция нейронов, расположенных на разных этажах нервной системы. Опыты с раздражением или перерезкой ЦНС показывают лишь, что отдельные нервные образования обязательны для осуществления того или иного рефлекса, а другие необязательны, хотя и участвуют при обычных условиях в рефлекторной деятельности. Примером служит дыхательный центр, в который в настоящее время включают не только "центр дыхания" продолговатого мозга, но и пневмотаксический центр моста, нейроны ретикулярной формации, коры и мотонейроны дыхательных мышц. Например, центр речи расположен в продолговатом и среднем мозге, откуда управляются речевые мышцы языка, гортани и губ. Части этого центра находятся в височной, лобной и теменной областях коры больших полушарий.        

Нервный центр - это центральная часть рефлекторной дуги.

Анатомический нервный центр - это совокупность нервных клеток, выполняющих общую для них функцию и лежащих в определенном отделе ЦНС.

В функциональном отношении нервный центр это сложное объединение нескольких анатомических нервных центров, расположенных в разных отделах ЦНС и обусловливающих сложнейшие рефлекторные акты.

А.А. Ухтомский называл такие объединения "созвездиями" нервных центров. Различные анатомические нервные центры объединяются в ФУС для получения определенного полезного результата.

Нервные центры также непосредственно реагируют на БАВ, содержащиеся в протекающей через них крови (гуморальные влияния).

Для выявления функций нервных центров используют ряд методов:

1. метод электродного раздражения;

2. метод экстирпации (удаления, для нарушения исследуемой функции);

3. электрофизиологический метод регистрации электрических явлений в нервном центре и др.

45 Свойства нервных центров.

1. Пластичность – способность нервного центра изменять свое функциональное назначение (начинает отвечать за несвойственные ему функции), увеличение от спинного мозга к коре больших полушарий. Наибольшее у детей, уменьшается с возрастом.

2. Лабильность нервного центра – способность усваивать навязываемый ритм (доминантный очаг подчиняет себе нижележащие нервные центры).

3. Суммация возбуждения нервного центра (возбужденное состояние синаптический ВПСП – локальный ответ):

– временная суммация осуществляется в одном и том же синапсе, при частой передачи через него нервных импульсов;

- пространственная суммация в области близкорасположенных синапсов.

4. Облегчение возбуждения – способность нервного центра, при одновременной стимуляции двух рецепторных зон, давать возбуждение больше, чем сумма двух его возбуждений при отдельной стимуляции этого центра. В1+2>В1+В2

Окклюзия (закупорка) – обратна облегчению. Когда нервный центр, при одновременной стимуляции двух рецепторных зон, дает возбуждение меньше, чем сумма двух его возбуждений при отдельной стимуляции. В1+2<В1+В2

Посттетаническая потенциация – феномен усиления рефлекторного ответа нервного центра, после предшествующего небольшого раздражения.

5. Трансформация ритма:

- понижающая – на входе один ритм, а на выходе его частота уменьшается;

- повышающая – в основе лежат явления мультипликации возбуждения, за счет ветвления аксонов.

6. Реберберация возбуждения – оно моет циркулировать в рефлекторных дугах.

- односторонне проведение;

- высокая утомляемость нервных центров;

- высокая чувствительность к недостатку кислорода;

- высокая чувствительность к лекарственным препаратам.

Центральная задержка связана с синаптической передачей. Чем больше синапсов, тем больше задержка.

Дивергенция возбуждения – расхождение нервных импульсов от нейрона к другим.

3.1.4. Свойства нервных центров

Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.

Нервный центр -- совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма  или  определенный рефлекторный акт.

Представление о структурно-функциональной основе  нервного  центра обусловлено историей развития учения о локализации функций в ЦНС. На смену старым теориям об узкой локализации,  или  эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов  нервного   центра , внося существенные различия в анатомических и физиологических границах  нервного   центра .

В результате функциональный нервный центр может быть локализован в разных анатомических структурах. Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.

1. Односторонность проведения возбуждения. В  рефлекторной  дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа -- афферентных путей к выходу -- эфферентным путям).

2. Иррадиация возбуждения. Особенности структурной организации центральных нейронов, огромное число межнейронных соединений в нервных центрах существенно модифицируют направление распространения возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в возбуждение центральных нейронов -- иррадиации возбуждения.

3. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения от различных участков рецептивного поля облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации в ответ на многократное возбуждение одних и тех же рецепторов обусловлены суммацией возбуждающих постсинаптических потенциалов (ВПСП) на постсинаптической мембране.

4. Наличие синоптической задержки. Время  рефлекторной  реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс.

При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций -- десятки и сотни миллисекунд.

5. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению  рефлекторной  реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов -- в последних истощается запас медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. Тонус,  или  наличие определенной фоновой активности  нервного   центра , определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоно-воактивных нервных клеток, формирующих сторожевые пункты и определяющих некоторый тонус соответствующего  нервного  центра.

7. Пластичность. Функциональная подвижность  нервного  центра, т.е. возможность включения его в регуляцию различных функций, может существенно модифицировать картину осуществляемых рефлекторных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности  или  направленности связей между нейронами.

8. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами афферентной информации. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и др.). Конвергенция нервных сигналов на уровне эфферентного  звена  рефлекторной   дуги  определяет физиологический механизм принципа общего конечного пути по Шеррингтону.

9. Интеграция в нервных центрах. Важные интегративные функции нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений нервных центров для осуществления сложных координированных приспособительных реакций организма.

10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (доминантный центр) повышенной возбудимости. По А.А. Ухтомскому, доминантный очаг характеризуется повышенной возбудимостью, стойкостью и инертностью возбуждения, способностью к суммированию возбуждения. В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения притягивает к себе возбуждение других возбужденных зон (нервные центры). Принцип доминанты определяет формирование главенствующего возбужденного нервного центра в тесном соответствии с ведущими потребностями организма в конкретный момент времени.

11. Цефализация нервной системы. Основная тенденция в эволюционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головные отделы ЦНС. Этот процесс называется цефализацией управляющей функции нервной системы. При всей сложности складывающихся отношений между древними и эволюционно новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния преимущественно носят возбуждающий, стимулирующий характер; нисходящие -- угнетающий, тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных реакций.

46 Виды торможения в ЦНС.

Торможение – самостоятельный нервный процесс, вызываемый возбуждением и проявляющийся в уменьшении или подавлении другого возбуждения.

Эффект центрального возбуждения открыл Сеченов.

Виды торможения:

- первичное торможения – с участием специализированных тормозных структур (в спинном мозге - клетки Рейншоу, в головном мозге - нейроны Куркина).

- вторичное торможение – без участия тормозных структур.

Единственной разновидностью вторичного торможения является пессимальное торможение. Оно возникает при высокочастотной и длительной активности возбужденных нейронов, при которой возникает кратковременная синаптическая депрессия. Механизмом её является то, что заканчивается доступный медиатор. Защита от перевозбуждения.

Виды первичного торможения:

- пресинаптическое торможение.

Аксо-сксональный синапс между аксоном возбужденного и аксоном тормозного нейрона.

Тормозным медиатором является гамма аминомасляная кислота (ГАМК).

ГАМК выделяется в синаптическую щель и соединяясь с рецепторами постсинаптической мембраны, вызывает открытие хлорных каналов, и выход хлора наружу. Исходящий ток хлора приводит к снижению отрицательного заряда изнутри и положительного заряда снаружи, т. е . к деполяризации (очень стойкой). Потенциал действия не может эту стойкую деполяризацию преодолеть, следовательно, снижение силы пришедшего возбуждения может на 50%, то количество медиатора крайне мало, или он вообще не будет выходить.

Функциональная роль пресинаптической мембраны - регуляция притока сенсорной информации в ядрах тройничного нерва таламуса, задних столбах спинного мозга.

- постсинаптическое торможение.

Структурной основой является аксосоматический синапс между аксоном тормозного нейрона и телом возбуждающего.

Тормозным медиатором, как правило, является вещество - глицин (аминомасляная кислота).

Глицин выделяется в синаптическую щель, соединяясь с рецепторами постсинаптической мембраны (в теле возбуждающего нейрона, вызывая ток Сl-, выходит К+, т. е. каналы открываются с вытеканием калия).

Наблюдается гиперполяризация, возникновение ТПСП, порог повышается, значительно затруднено возникновение возбуждения, т. е. возбуждение уменьшается.

ВПСП – возбуждающий пресинаптический потенциал. ТПСП – тормозной пресинаптический потенциал.

Электрические синапсы как вариант щелевого межклеточного контакта имеют крайне низкое амическое сопротивление, когда очень узкая синаптическая щель 2-4нм; в щели имеются поперечные белковые мостики, которые образуют каналы заполненные электролитами, по которым проходит ток без химического посредника (медиатора). Следовательно, передача возбуждения будет быстрая и надежная, с нулевой утомляемостью и высокой лабильностью. Двусторонне возбуждение, регулировать передачу возбуждения практически невозможно, т. к. отсутствует тормозной синапс.

Торможение – активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:

а) пресинаптическое в аксо-аксональном синапсе;

б) постсинаптическое в аксодендрическом синапсе.

2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:

а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

б) пессимальное, возникающее при высокой частоте раздражения;

в) парабиотическое, возникающее при сильно и длительно действующем раздражении;

г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

д) торможение по принципу отрицательной индукции;

е) торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.

Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению α-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.

Виды торможения

Описанные способы обеспечивают реализацию нескольких видов безусловного торможения:  реципрокного, возвратного, латерального, для реализации которых существуют специальные нервные структуры.

Известно несколько нейронных цепей торможения. Среди них реципрокное или антагонистическое торможение (Рис. 4). Такой вид торможения очень выгоден для мышечной работы, поскольку облегчает движение сустава «автоматически», без дополнительного произвольного или непроизвольного контроля.

 Реципрокное торможение развивается в центрах противоположной деятельности - например, в центрах сгибателей при возбуждении центра разгибателей.  Возвратное торможение осуществляет мотонейрон через клетку  Реншоу, обеспечивая готовность воспринять новую команду от пирамидной клетки.

Возвратным торможением называют нейронную цепь, в которой тормозные вставочные нейроны действуют на те же нервные клетки, которые их возбуждают. Характерный пример возвратного торможения существует в мотонейронах. Мотонейроны  посылают коллатерали к вставочным нейронам, аксоны которых образуют тормозные синапсы на мотонейронах. Такая тормозная цепь называется торможением Реншоу, а тормозной вставочный нейрон клеткой Реншоу. В такой цепи усиление возбуждения, поступающего к мышце, усиливает торможение мотонейрона под действием клетки Реншоу. Это пример торможения по  принципу обратной связи.

Латеральное торможение возникает в центре рефлекса, когда возникает посторонний достаточно сильный сигнал, который через тормозные клетки тормозит текущую деятельность.

Способы торможения.

В центральной нервной системе существует несколько способов торможения, имеющих разную природу и разную локализацию. но в принципе основанных на одном механизме - увеличении разницы между критическим уровнем деполяризации и величиной мембранного потенциала нейронов.

        1. Постсинаптическое торможение. Тормозные нейроны. В настоящее время установлено, что в ЦНС наряду с возбуждающими нейронами существуют и особые тормозные нейроны. Примером может служить т.н. клетка Реншоу в спинном мозге. Реншоу открыл, что аксоны мотонейронов перед выходом из спинного мозга дают одну или несколько коллатералей, которые заканчиваются на особых клетках, чьи аксоны образуют тормозные синапсы на мотонейронах данного сегмента. Благодаря этому возбуждение, возникающее в мотонейроне, по прямому пути распространяется на периферию к скелетной мышце, а по коллатерали активирует тормозную клетку, которая подавляет дальнейшее возбуждение мотонейрона. Это механизм, автоматически охраняющий нервные клетки от чрезмерного возбуждения.        Торможение, осуществляющееся при участии клеток Реншоу, получило название возвратного постсинаптического торможения. Тормозным медиатором у клетки Реншоу является глицин.

Нервные импульсы, возникающее при возбуждении тормозящих нейронов, не отличаются от потенциалов действия обычных возбуждающих нейронов. Однако в нервных окончаниях тормозящих нейронов под влиянием этого импульса выделяется медиатор, который не деполяризует, а, наоборот, гиперполяризует постсинаптическую мембрану. Эта гиперполяризация регистрируется в форме тормозного постсинаптического потенциала (ТПСП) - электроположительной волны. ТПСП ослабляет возбудительный потенциал и препятствует тем самым достижению критического уровня деполяризации мембраны, необходимого для возникновения распространяющегося возбуждения. Постсинаптическое торможение можно устранить стрихнином, который блокирует тормозные синапсы.    

      2. Пресинаптическое торможение. Оно открыто в ЦНС сравнительно недавно, поэтому изучено меньше. Пресинаптическое торможение локализуется в пресинаптических терминалях перед синаптической бляшкой. На пресинаптических терминалях располагаются окончания аксонов других нервных клеток, образующих здесь аксо-аксональные синапсы. Медиаторы их деполяризуют мембрану терминалей и приводят в состояние, подобное катодической депрессии Вериго. Это обусловливает частичную или полную блокаду проведения по нервным волокнам возбуждающих импульсов, идущих к нервным окончаниям. Пресинаптическое торможение обычно длительное.

3.Посттетаническое торможение. Особым видом торможения является такое, которое возникает в случае, если после окончания возбуждения в клетке возникает сильная гиперполяризация мембраны. Возбуждающий постсинаптический потенциал в этих условиях оказывается недостаточным для критической деполяризации мембраны, и генерации распространяющегося возбуждения. Причина такого торможения в том, что следовые потенциалы способны к суммации, и после серии частых импульсов возникает суммация положительного следового потенциала.  

      4. Пессимальное торможение. Торможение деятельности нервной клетки может осуществляться и без участия особых тормозных структур. В этом случае оно возникает в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком частых импульсов (как пессимум в нервно-мышечном препарате). К пессимальному торможению особо склонны промежуточные нейроны спинного мозга, нейроны ретикулярной формации. При стойкой деполяризации в них наступает состояние, подобное катодической депрессии Вериго.

Роль различных видов центрального торможения. Главная роль центрального торможения заключается в том, чтобы во взаимодействии с центральным возбуждением обеспечивать возможность анализа и синтеза в ЦНС нервных сигналов, а следовательно, возможность согласования всех функций организма между собой и с окружающей средой. Эту роль центрального торможения называют координационным. Некоторые виды центрального торможения выполняют не только координационный, а защитную (охранную) роль. Предполагают, что основная координационная роль пресинаптического торможения заключается в угнетении в ЦНС малосущественными афферентных сигналов. За счет прямого постсинаптического торможения согласуется деятельность антагонистических центров. Обратное торможение, ограничивая максимально возможную частоту разрядов мотонейронов спинного мозга, выполняет и координационную роль (согласовывает максимальную частоту разрядов мотонейронов со скоростью сокращения мышечных волокон, которые они иннервируют) и защитную (предотвращает возбуждению мотонейронов). У млекопитающих этот вид торможения распространен в основном в спинномозговых афферентных системах. В высших отделах мозга, а именно в корковом веществе большого мозга, доминирует постсинаптического торможения.

Центральное торможение (первичное):

-постсинаптическое;

- возвратное постсинаптическое;

-ретикулярное;

- синаптическое;

- пресинаптическое.

Вторичное торможение:

- реципрокное;

- общее центральное;

- парабиоточеское.

В настоящее время в центральной нервной системе выделяют два вида торможения: торможение центральное (первичное), являющееся результатом возбуждения (активации) специальных тормозных нейронов и торможение вторичное, которое осуществляется без участия специальных тормозных структур в тех самых нейронах в которых происходит возбуждение.

Центральное торможение(первичное) - нервный процесс, возникающий в ЦНС и приводящий к ослаблению или предотвращению возбуждения. Согласно современным представлениям центральное торможение связано с действием тормозных нейронов или синапсов, продуцирующих тормозные медиаторы (глицин, гаммааминомасляную кислоту), которые вызывают на постсинаптической мембране особый тип электрических изменений, названных тормозными постсинаптическими потенциалами (ТПСП) или деполяризацию пресинаптического нервного окончания, с которым контактирует другое нервное окончание аксона. Поэтому выделяют центральное (первичное) постсинаптическое торможение и центральное (первичное) пресинаптическое торможение. 

Постсинаптическое торможение (лат. post позади, после чего-либо + греч. sinapsis соприкосновение, соединение) - нервный процесс, обусловленный действием на постсинаптическую мембрану специфических тормозных медиаторов (глицин, гаммааминомаслянная кислота), выделяемых специализированными пресинаптическими нервными окончаниями. Медиатор, выделяемый ими, изменяет свойства постсинаптической мембраны, что вызывает подавление способности клетки генерировать возбуждение. При этом происходит кратковременное повышение проницаемости постсинаптической мембраны к ионам К+ или CI-, вызывающее снижение ее входного электрического сопротивления и генерацию тормозного постсинаптического потенциала (ТПСП). Возникновение ТПСП в ответ на афферентное раздражение обязательно связано с включением в тормозной процесс дополнительного звена - тормозного интернейрона, аксональные окончания которого выделяют тормозной медиатор. Специфика тормозных постсинаптических эффектов впервые была изучена на мотонейронах млекопитающих (Д. Экклс, 1951). В дальнейшем первичные ТПСП были зарегистрированы в промежуточных нейронах спинного и продолговатого мозга, в нейронах ретикулярной формации, коры больших полушарий, мозжечка и таламических ядер теплокровных животных.

Известно, что при возбуждении центра сгибателей одной из конечностей центр ее разгибателей тормозится и наоборот. Д. Экклс выяснил механизм этого явления в следующем опыте. Он раздражал афферентный нерв, вызывающий возбуждение мотонейрона, иннервирующего мышцу - разгибатель.

Нервные импульсы, дойдя до афферентного нейрона в спинномозговом ганглии, направляются по его аксону в спинном мозге по двум путям: к мотонейрону, иннервирующему мышцу - разгибатель, возбуждая ее и по коллатерам к промежуточному тормозному нейрону, аксон которого контактирует с мотонейроном иннервирующим мышцу - сгибатель, вызывая таким образом торможение антагонистической мышцы. Этот вид торможения был обнаружении в промежуточных нейронах всех уровней центральной нервной системы при взаимодействии антагонистических центров. Он был назван поступательным постсинаптическим торможением. Этот вид торможения координирует, распределяет процессы возбуждения и торможения между нервными центрами.

Возвратное (антидромное) постсинаптическое торможение (греч. antidromeo бежать в противоположном направлении) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по принципу отрицательной обратной связи. Он заключается в том, что коллатерали аксонов нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами (клетки Реншоу), роль которых заключается в воздействии на нейроны, конвергирующие на клетке, посылающей эти аксонные коллатерали (рис. 87). По такому принципу осуществляется торможение мотонейронов.

Возникновение импульса в мотонейроне млекопитающих не только активирует мышечные волокна, но через коллатерали аксона активирует тормозные клетки Реншоу. Последние устанавливают синаптические связи с мотонейронами. Поэтому усиление импульсации мотонейрона ведет к большей активации клеток Реншоу, вызывающей усиление торможения мотонейронов и уменьшение частоты их импульсации. Термин "антидромное” употребляется потому, что тормозной эффект легко вызывается антидромными импульсами, рефлекторно возникающими в мотонейронах.

Чем сильнее возбужден мотонейрон, чем больше сильные импульсы идут к скелетным мышцам по его аксону, тем интенсивнее возбуждается клетка Реншоу, которая подавляет активность мотонейрона. Следовательно, в нервной системе существует механизм, оберегающий нейроны от чрезмерного возбуждения. Характерная особенность постсинаптического торможения заключается в том, что оно подавляется стрихнином и столбнячным токсином (на процессы возбуждения эти фармакологические вещества не действуют).

В результате подавления постсинаптического торможения нарушается регуляция возбуждения в цнс, возбуждение разливается ("диффундирует”) по всей цнс, вызывая перевозбуждение мотонейронов и судорожные сокращения групп мышц (судороги). 

Торможение ретикулярное (лат. reticularis - сетчатый) - нервный процесс развивающийся в спинальных нейронах под влиянием нисходящей импульсации из ретикулярной формации (гигантское ретикулярное ядро продолговатого мозга). Эффекты, создаваемые ретикулярными влияниями, по функциональному действию сходны с возвратным торможением, развивающимся на мотонейронах. Влияние ретикулярной формации вызывают стойкие ТПСП, охватывающие все мотонейроны независимо от их функциональной принадлежности. В этом случае, так же как и при возвратном торможении мотонейронов происходит ограничение их активности. Между таким нисходящим контролем со стороны ретикулярной формации и системочй возвратного торможения через клетки Реншоу существует определенное взаимодействие, и клетки Реншоу находятся под постоянным тормозящем контролем со стороны двух структур. Тормозящее влияние со стороны ретикулярной формации являются дополнительным фактором в регуляции уровня активности мотонейронов.

Первичное торможение может вызываться механизмами иной природы, не связанными с изменениями свойств постсинаптической мембраны. Торможение в этом случае возникает на пресинаптической мембране (синаптическое и пресинаптическое торможение).

Синаптическое торможение (греч. sunapsis соприкосновение, соединение) - нервный процесс, основанный на взаимодействии медиатора, секретируемого и выделяемого пресинаптическими нервными окончаниями, со специфическими молекулами постсинаптической мембраны. Возбуждающий или тормозной характер действия медиатора зависит от природы каналов, которые открываются в постсинаптической мембране. Прямое доказательство наличия в цнс специфических тормозящих синапсов было впервые получено Д. Ллойдом (1941).

Данные относительно электрофизиологических проявлений синаптического торможения: наличие синаптической задержки, отсутствие электрического поля в области синаптических окончаний дали основание считать его следствием химического действия особого тормозящего медиатора, выделяемого синаптическими окончаниями. Д. Ллойд показал, что если клетка находится в состоянии деполяризации, то тормозной медиатор вызывает гиперполяризацию, в то время как на фоне гиперполяризации постсинаптической мембраны он вызывает ее деполяризацию.

Пресинаптическое торможение (лат. praе -впереди чего-либо + греч. sunapsis соприкосновение, соединение) - частный случай синаптических тормозных процессов, проявляющихся в подавлении активности нейрона в результате уменьшения эффективности действия возбуждающих синапсов еще на пресинаптическом звене путем угнетения процесса высвобождения медиатора возбуждающими нервными окончаниями. В этом случае свойства постсинаптической мембраны не подвергаются каким-либо изменениям. Пресинаптическое торможение осуществляется посредством специальных тормозных интернейронов. Его структурной основой являются аксо-аксональные синапсы, образованные терминалиями аксонов тормозных интернейронов и аксональными окончаниями возбуждающих нейронов.

При этом окончание аксона тормозного нейрона является пресимпатическим по отношению к терминали возбуждающего нейрона, которая оказывается постсинаптической по отношению к тормозному окончанию и пресинаптической по отношению к активируемой им нервной клетки. В окончаниях пресинаптического тормозного аксона освобождается медиатор, который вызывает деполяризацию возбуждающих окончаний за счет увеличения проницаемости их мембраны для CI-. Деполяризация вызывает уменьшение амплитуды потенциала действия, приходящего в возбуждающее окончание аксона. В результате происходит угнетение процесса высвобождения медиатора возбуждающими нервными окончаниями и снижение амплитуды возбуждающего постсинаптического потенциала.

Характерной особенностью пресинаптической деполяризации является замедленное развитие и большая длительность (несколько сотен миллисекунд), даже после одиночного афферентного импульса.

Пресинаптическое торможение существенно отличается от постсинаптического и в фармакологическом отношении. Стрихнин и столбнячный токсин не влияют на его течение. Однако наркотизирующие вещества (хлоралоза, нембутал) значительно усиливают и удлиняют пресинаптическое торможение. Этот вид торможения обнаружен в различных отделах цнс. Наиболее часто оно выявляется в структурах мозгового ствола и спинного мозга. В первых исследованиях механизмов пресинаптического торможения считалось, что тормозное действие осуществляется в точке, отдаленной от сомы нейрона, поэтому его называли "отдаленным” торможением.

Функциональное значение пресинаптического торможения, охватывающего пресинаптические терминали, по которым поступают афферентные импульсы, заключается в ограничении поступления к нервным центрам афферентной импульсации. Пресинаптическое торможение в первую очередь блокирует слабые асинхронные афферентные сигналы и пропускает более сильные, следовательно, оно служит механизмом выделения, вычленения более интенсивных афферентных импульсов из общего потока. Это имеет огромное приспособительное значение для организма, так как из всех афферентных сигналов, идущих к нервным центрам, выделяются самые главные, самые необходимые для данного конкретного времени. Благодаря этому нервные центры, нервная система в целом освобождается от переработки менее существенной информации.

Вторичное торможение - торможение осуществляющееся теми же нервными структурами, в которых происходит возбуждение. Этот нервный процесс подробно изложен в работах Н.Е. Введенского (1886, 1901г.г.).

Торможение реципрокное (лат. reciprocus - взаимный) - нервный процесс, основанный на том, что одни и те же афферентные пути, через которые осуществляется возбуждение одной группы нервных клеток, обеспечивают через посредство вставочных нейронов торможение других групп клеток. Реципрокные отношения возбуждения и торможения в цнс были открыты и продемонстрированы Н.Е. Введенским: раздражение кожи на задней лапке у лягушки вызывает ее сгибание и торможение сгибания или разгибания на противоположной стороне. Взаимодействие возбуждения и торможения является общим свойством всей нервной системы и обнаруживается как в головном, так и в спинном мозге. Экспериментально доказано, что нормальное выполнение каждого естественного двигательного акта основано на взаимодействии возбуждения и торможения на одних и тех же нейронах цнс.

Общее центральное торможение - нервный процесс, развивающийся при любой рефлекторной деятельности и захватывавающий почти всю цнс, включая центры головного мозга. Общее центральное торможение обычно проявляется раньше возникновения какой-либо двигательной реакции. Оно может проявляться при такой малой силе раздражения при которой двигательный эффект отсутствует. Такого вида торможение было впервые описано И.С. Беритовым (1937). Оно обеспечивает концентрацию возбуждения других рефлекторных или поведенческих актов, которые могли бы возникнуть под влиянием раздражений. Важная роль в создании общего центрального торможения принадлежит желатинозной субстанции спинного мозга.

При электрическом раздражении желатинозной субстанции у спинального препарата кошки происходит общее торможение рефлекторных реакций, вызываемых раздражением сенсорных нервов. Общее торможение является важным фактором в создании целостной поведенческой деятельности животных, а также в обеспечении избирательного возбуждения определенных рабочих органов.

Парабиотическое торможение развивается при патологических состояниях, когда лабильность структур центральной нервной системы снижается или происходит очень массивное одновременное возбуждение большого числа афферентных путей, как, например, при травматическом шоке.

Некоторые исследователи выделяют еще один вид торможения - торможение вслед за возбуждением. Оно развивается в нейронах после окончания возбуждения в результате сильной следовой гиперполяризации мембраны (постсинаптической).

Торможение в нервных центрах:

- возвратное торможение – реализуется при сильном возбуждении нервного центра, механизм ограничения перевозбуждения.

- латеральное (боковое) – является механизмом концентрации возбуждения. Рецепторы отключают все зоны торможения.

- реципрокное торможение – один центр возбуждается, а другой выполняет антагонистическую функцию затормаживания (мышцы сгибания-разгибания).

47 Механизмы пресинаптического торможения, его физиологическое значение.

48 Механизмы постсинаптического торможения, его физиологическое значение.

49 Вторичное торможение, его механизмы и физиологическая роль.

50 Виды торможения в нервных центрах.

См. вопрос №46.

51 Принципы координации рефлекторной деятельности нервных центров.

Координация деятельности цнс – согласование и соподчинение деятельности различных нервных центров.

Принцип общего конечного пути:

Открыл Чарльз Шеррингтон в 1906 году.

Использование одного нервного центра, как правило, непосредственно выходящими на эффектор, другими нервными центрами, реализующими через него своё функциональное назначение. При этом на основе принципа доминанты происходит борьба этих центров за конечный путь.

Принцип проторения пути:

Если возбуждение в цнс проходит несколько раз одними и теми же цепями нейронов, то в дальнейшем оно пройдет по тому же проторенному пути. В основе принципа лежит кратковременная или долговременная потенциация.

Принцип переключения:

Заключается в способности цнс переключать одну и ту же афферентную импульсацию на центры различных рефлексов.

Принцип реципрокности:

Когда возбуждение одного центра сочетается с торможением другого центра.

Принцип обратной связи:

Когда результат любой рефлекторной деятельности, посредством обратной афферентации, оценивается нервным центром.

Принцип доминанты:

Ввел Ухтомский. Есть временно господствующий возбуждающий центр, который направляет работу других центров на основе соподчинения или объединения.

Свойства доминанты:

- высокая возбудимость доминантного очага;

- широкие рецептивные поля;

- сильный фенеональный ответ;

- подавление активности других центров;

- доминантный очаг крайне чувствителен к гуморальным раздражителям.

Принцип кортикализации функций:

Заключается в том, что в процессе эволюции к коре больших полушарий головного мозга в усовершенствованном виде перешли функции, ранее выполняемые нижележащими отделами цнс.

Принцип общего конечного пути. Разработан Ч. Шеррингтоном. В основе его лежит явление конвергенции. Согласно этому принципу на одном эфферентном мотонейроне могут образовывать синапсы нескольких афферентных, входящих в несколько рефлекторных дуг. Этот нейрон называется общим конечным путем и участвует в нескольких рефлекторных реакциях. Если взаимодействие этих рефлексов приводит к усилению обшей рефлекторной реакции, такие рефлексы называются союзными. Если же между афферентными сигналами происходит борьба за мотонейрон - конечный путь, то антагонистическими. В результате этой борьбы второстепенные рефлексы ослабляются, а жизненно важным освобождается общий конечный путь.

4. Реципрокное торможение. Обнаружено Ч. Шеррингтоном. Это явление торможения одного Центра в результате возбуждения другого. Т.е. в этом случае тормозится антагонистический центр. Например при возбуждении центров сгибания левой ноги по реципрокному механизму тормозятся центры мышц разгибателей этой же ноги и центры сгибателей правой. В реципрокных взаимоотношениях находятся, центры вдоха и выдоха продолговатого мозга. центры сна и бодрствования и т.д.

5. Принцип доминанты. Открыт А.А. Ухтомским. Доминанта - это преобладающий очаг возбуждения в ЦНС, подчиняющий себе другие НЦ. Доминантный центр обеспечивает комплекс рефлексов, которые необходимы в данный момент для достижения определенной цели. При некоторых условиях возникают питьевая, пищевая, оборонительная, половая и др. доминанты. Свойствами доминантного очага являются повышенная возбудимость, стойкость возбуждения, высокая способность к суммации, инертность. Эти свойства обусловлены явлениями облегчения, иррадиации, с одновременным повышением активности вставочных тормозных нейронов, которые тормозят нейроны других центров.

6. Принцип обратной афферентации. Результаты рефлекторного акта воспринимаются нейронами обратной афферентации и информация от них поступает обратно в нервный центр. Там они сравниваются с параметрами возбуждения и рефлекторная реакция корректируется.

Иррадиация и концентрация возбуждения и торможения и их взаимная индукция.  Изучение особенностей течения возбуждения и торможения в ЦНС выявило, что эти процессы не остаются только в тех центрах, где они вызваны, а распространяются (иррадиируют) на другие нервные центры, а также индуцируют друг друга в сопряженно работающих центрах. Иначе говоря, возбуждение и торможение движутся в пространстве ЦНС и во времени. Законы движения возбуждения и торможения определяют координацию, т.е. согласованное течение всей сложной рефлекторной деятельности животного и человеческого организма.

Нервные процессы, возникая в тех или иных центрах, имеют тенденцию широко распространяться в нервной системе. При некоторых искусственных условиях (стрихнинизация) эта особенность выступает весьма рельефно. Показано (Орбели), что если деафферентировать нервные центры, ведающие сокращением конечности (освободить их от занятости тоническими и др. реакциями), то такая конечность начинает сокращаться в ритме деятельности дыхательного центра за счет иррадиации возбуждения из его структур.

В норме распространение иррадиированной волны возбуждения ограничивается торможением, которое и определяет течение возбуждения в пространственно определенных участках нервной системы. Этот процесс взаимного ограничения возбуждения и торможения был назван законом концентрирования возбуждения и торможения.

Иррадиация и концентрация нервных процессов усложняется индукцией - наведением в нервных центрах, одновременно работающих с возбужденным или заторможенным в данный момент, противоположного процесса. Приведенный пример относится к одновременной (пространственной) индукции. Помимо ее, существует и индукция последовательная . Она проявляется в том, что возбуждение в том или ином центре сменяется торможением и наоборот, торможение в центре как бы подготавливает почву для более легкого возникновения в нем возбуждения (отрицательная и положительная индукция).

Принцип субординации нервных центров. В нервной системе выше расположенный центр всегда контролирует и в случае необходимости тормозит деятельность нижележащего. Однако, если блокировать тормозные синапсы в нервной системе, этот процесс прекращается и наступает нарушение координации рефлекторных актов.

Принцип доминанты. Однако, анатомический принцип Шеррингтона недостаточен для того, чтобы понять, почему на одних путях возникает торможение, и почему возбуждение свободно проходит на других путях - тех, которые составляют рефлекторную дугу для рефлекторного акта, осуществляющегося в данный отрезок времени. На этот вопрос отвечает физиологический принцип координации, открытый А.А.Ухтомским - принцип доминанты. Этот принцип исходит их учета состояния нервных центров, их возбудимости, физиологической лабильности и занятости или покоя в момент прихода к нему разных импульсов. В результате предшествующих событий, происходящих в НС (работы, подпороговых раздражений, действия гуморальных агентов и т.п.) повышается возбудимость определенных нервных центров. Поэтому импульсы, адресованные в эти, более других подготовленные к реакции нервные центры, получают предпочтение перед другими и свободно проходят к месту назначения. Остальные же импульсы, не имеющие таких преимуществ, тормозятся на общих путях. Очаг, более других подготовленный к реакции, получает значение господствующего очага, доминирующего над всеми остальными центрами НС.

По А.А.Ухтомскому, для доминантного очага характерны следующие черты:

1) повышенная возбудимость и лабильность; 

 2)способность к суммированию возбуждений;

3)стойкость возбуждения в доминантном очаге;

4)способность подкреплять в себе возбуждение за счет импульсов,   приходящих в другие центры;

5)  способность тормозить при этом другие центры.

Другим примером может служить обнимательный рефлекс у весенних лягушек-самцов. За счет сокращения сгибателей передних конечностей самец крепко обхватывает самку, удерживая ее в таком положении в течение всего периода метания икры, который может продолжаться до 10 дней. Доминантный очаг этот тормозит все другие центры, поэтому нанесение раздражения на кожу нижних конечностей самца не вызывает отдергивания лапки, а усиливает сгибание передних лап.

       В естественных условиях существования животных и человека доминанта охватывает большие системы рефлексов - так возникает пищевая, половая, оборонительная, гестационная и прочие доминанты. Доминирует всегда определенная функциональная система с важным, наиболее биологически значимым в данный момент приспособительным результатом.

Принцип общего поля. В осуществлении координации рефлекторной деятельности проявляется т.н. принцип общего поля, исходящий из анатомических отношений в НС. Он был открыт в 1904 г. Шеррингтоном.

        В объяснении того, как обеспечивается координирование рефлексов в пределах ЦНС, Шеррингтон исходил из факта, что число афферентных нейронов преобладает над эфферентными. Если иметь в виду только чувствующие нейроны, несущие импульсы к спинному мозгу, то их количество примерно в 5 раз превышает число мотонейронов. Если же учесть количество вставочных нейронов, которые по существу тоже относятся в воспринимающим раздражение нейронам НС, то количество воспринимающих и анализирующих раздражение внешней среды нервных клеток колоссально возрастает по сравнению с числом нейронов-исполнителей - мотонейронов, сосудодвигательных, секреторных, трофических и т.д..

С этих позиций ЦНС можно представить себе в качестве "воронки", с весьма широким входным отверстием, куда поступают раздражения с различных рецепторов, и весьма узким выходным отверстием - узким пучком эффекторных нейронов, через которые возбуждение покидает НС. В эту воронку одновременно вступают импульсы, возникающие при раздражении многих рецепторов. Все они "претендуют" на то, чтобы вызвать возбуждение одной и той же группы мотонейронов, использовать их для осуществления рефлекторного акта, соответствующего раздражению разных рецепторов (холодовых, тактильных, болевых и т.д.). Данная группа мотонейронов одновременно не может подчиняться всем тем влияниям, которые на нее воздействуют, которые к ней адресованы. В каждый данный момент рабочее значение приобретают только определенные импульсы. Импульсы со всех остальных рецепторов тормозятся в ЦНС, чем и обусловливается использование общего пути только для определенных влияний. Торможение происходит на стыке двух нейронов перед третьим, составляющим для данных нейронов общий путь. Считается, что актуальным становится самый сильный раздражитель.

Таким образом, НС имеет такое строение, что по необходимости волны возбуждения сталкиваются между собой и к исполнительным механизмам может быть проведен только результат столкновения разнообразных импульсов возбуждения. Принцип общего поля обеспечивает использование одних и тех же исполнительных механизмов - мотонейронов с их рабочей периферией - в самых разнообразных направлениях, для разных целей. Например, передние конечности животных могут быть использованы и для защитных реакций, и для почесывания, плавания, и т.п.. Человек же, помимо этого, использует верхние конечности для письма, жестикуляции, рисования, игры на музыкальных инструментах и т.д. Координация в соответствии с принципом общего поля происходит на любых этажах нервной системы.

Принцип обратной связи. Рефлекторные акты животных и человека не протекают изолированно один от другого, и деятельность ЦНС нельзя понимать как сумму рефлексов. Уже при рассмотрении законов движения нервных процессов можно было убедиться, что рефлекторные дуги увязаны между собой в работе. Аналогичная увязка рефлекторных дуг осуществляется при более сложных рефлексах спинного мозга, например, при рефлексе потирания, почесывания и др.

Все это указывает на наличие координации рефлексов, на их взаимную увязку в целостную реакцию нервной системы на раздражения внешней и внутренней среды. Координация осуществляется и на уровне спинного мозга (по словам Джексона, спинной мозг "думает" не рефлекторными дугами, а цельными рабочими актами - сгибанием, почесыванием, локомоцией и т.п.). Она же является настоящей необходимостью, когда рефлекторная деятельность сильно усложняется включением в нее вышележащих отделом мозга, когда все отделы НС работают как единое целое.

Эксперименты на животных с перерезкой всех чувствительных нервов (деафферентацией) показали, что в осуществлении рефлекторных реакций и их координации огромное значение принадлежит т.н. обратной связи, которая осуществляется в результате раздражения проприорецепторов, осморецепторов и др.  Импульсы, текущие от них в центры, сигнализируют о степени выполнения действия, могут усилить или затормозить осуществляемый рефлекс.

Обратные связи могут быть положительными и отрицательными. Положительные обратные связи имеются в тех случаях, когда импульсы с периферии, возникающие в результате какой-либо рефлекторной реакции, ее усиливают. Отрицательные обратные связи - когда эти импульсы угнетают рефлекторную реакцию. Чаще всего отрицательные и положительные обратные связи сосуществуют. Например, вторичные афферентные импульсы, возникающие при осуществлении сокращения скелетной мускулатуры, вызывают или усиливают возбуждение одних центров, и тормозят другие. Благодаря существованию обратной связи между нервными центрами и рабочими органами интенсивность возбуждения и торможения в нервном центре и последовательность включения различных его элементов становятся строго согласованными с рабочими эффектами.

 Особенно важную роль вторичные афферентные импульсы играют в поддержании постоянного уровня АД, регуляции вдоха и выдоха, постоянства осмотического давления, т.е. в деятельности любой функциональной системы.

Реципрокная иннервация. Для центров безусловно-рефлекторной деятельности взаимная индукция наиболее рельефно выступает в центрах сопряженно работающих сгибателей и разгибателей конечностей. Работами Шеррингтона был установлен закон т.н. реципрокной (соотносительной) иннервации мышц-антагонистов. В соответствии с этим законом мышцы антагонисты не противодействуют друг другу в работе, а содействуют - в то время, когда происходит сокращение сгибателей, соответствующие им разгибатели расслабляются. Данный эффект обусловлен тем, что при возбуждении центров сгибателей в центрах разгибателей одноименной стороны индуцируется процесс торможения.

52 Спинной мозг, его строение и функции.

- тяж, нервная ткань.

- функционально делится на 31-33 сегмента.

- делится на 5 отделов:

Шейный (7 позвонков, но 8 сегментов) С – церебрикум С1-С8

Грудной Th1-Th2 – тохбрикум

Поясничный – люмбалис L1-L5

Крестцовый – сакралис S1-S5

Копчиковый С0-С02.

5 грудной – 3 поясничный – иннервируют мускулатуру тела

С1-С4 – шейный – мышцы шеи

С3-С5 – диафрагма

С5-Тh2 – мышцы верхних конечностей

3 грудной – 1 поясничный – мышцы туловища

2 поясничный – 5 крестцовый – нижние конечности.

Функции спинного мозга:

- рефлекторная – замыкаются дуги спинномозговых рефлексов;

- проводниковая – наличие проводящих путей;

- исполнительная – в спинном мозге располагаются низшие исполнительные отделы нервных центров.

Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность.

Нейроны спинного мозга образуют его серое вещество в виде передних и задних рогов. Они выполняют рефлекторную функцию спинного мозга.

Задние рога содержат нейроны (интернейроны), которые передают импульсы в вышележащие центры, в симметричные структуры противоположной стороны, к передним рогам спинного мозга. Задние рога содержат афферентные нейроны, которые реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения.

Передние рога содержат нейроны (мотонейроны), дающие аксоны к мышцам, они являются эфферентными. Все нисходящие пути ЦНС двигательных реакций заканчиваются в передних рогах.

В боковых рогах шейных и двух поясничных сегментов располагаются нейроны симпатического отдела вегетативной нервной системы, во втором—четвертом сегментах – парасимпатического.

В составе спинного мозга имеется множество вставочных нейронов, которые обеспечивают связь с сегментами и с вышележащими отделами ЦНС, на их долю приходится 97 % от общего числа нейронов спинного мозга. В их состав входят ассоциативные нейроны – нейроны собственного аппарата спинного мозга, они устанавливают связи внутри и между сегментами.

Белое вещество спинного мозга образовано миелиновыми волокнами (короткими и длинными) и выполняет проводниковую роль.

Короткие волокна связывают нейроны одного или разных сегментов спинного мозга.

Длинные волокна (проекционные) образуют проводящие пути спинного мозга. Они формируют восходящие пути, идущие к головному мозгу, и нисходящие пути, идущие от головного мозга.

Спинной мозг выполняет рефлекторную и проводниковую функции.

Рефлекторная функция позволяет реализовать все двигательные рефлексы тела, рефлексы внутренних органов, терморегуляции и т. д. Рефлекторные реакции зависят от места, силы раздражителя, площади рефлексогенной зоны, скорости проведения импульса по волокнам, от влияния головного мозга.

Спинной мозг является частью центральной нервной системы, которая связана с периферией тела – кожей, мышцами и некоторыми другими внутренними органами. Эти связи осуществляются у человека посредством 31-33 пар нервов, отходящих от спинного мозга, который соответственно делится на 31-32 отрезка (сегмента) Каждый из этих сегментов иннервирует определенный участок тела.

Существует 8 шейных сегментов, 12 грудных, 5 поясничных, 5 крестцовых и 1-3 копчиковых. В спинной мозг поступает информация с периферии, а от спинного мозга к мышцам идут распоряжения совершать те или иные движения.

Центральная часть спинного мозга состоит из серого вещества, которое на поперечном разрезе напоминает бабочку с развернутыми крыльями. Серое вещество спинного мозга представляет собой концентрацию огромного количества нервных клеток - нейронов. В каждом сегменте десятки или сотни тысяч нейронов, а всего в спинном мозгу человека их более тринадцати миллионов.

Серое вещество мозга окружено белым веществом, состоящим из нервных волокон - отростков нейронов. Несмотря на то, что нейроны очень малы и обычно не превышают в диаметре 0,1 миллиметра, длина их отростков порой доходит до полутора метров.

«Бабочка» серого вещества состоит из различных клеток. В передних ее отделах располагаются крупные двигательные клетки, длинные волокна, выходящие из спинного мозга и идущие к мышцам. Выходя из спинного мозга, эти волокна собираются в пучки, которые называются передними корешками. Из каждого сегмента выходит одна пара передних корешков: один - направо, другой - налево. Чувствительные волокна, входящие в каждый сегмент, образуют пару задних корешков.

В спинном мозгу часть чувствительных волокон направляется вверх, в головной мозг. Другая часть входит в серое вещество; здесь чувствительные волокна оканчиваются или на двигательных клетках, или на мелких промежуточных, или вставочных, клетках, которые играют очень большую роль в работе спинного мозга.

Раздражение чувствительных нервных окончаний кожи, мышц, суставов, сухожилий вызывает распространяющийся по нервному волокну сигнал - нервный импульс. Импульсы, приходящие в спинной мозг по чувствительным волокнам задних корешков, возбуждают вставочные и двигательные клетки; отсюда по двигательным волокнам передних корешков импульсы бегут к мышцам и вызывают их сокращение. Так осуществляются простые рефлексы. Рефлексами (от латинского слова reflexio - отражение) физиологи назвали реакции организма на раздражения, осуществляемые через центральную нервную систему.

Следовательно, одна из основных функций спинного мозга - рефлекторная. Путь, по которому идут нервные импульсы от периферии в спинной мозг и от него - к мышцам, называют рефлекторной дугой. Есть ряд рефлексов, у которых дуги отлично изучены. Полученные данные невропатологии используют в практике. Например, когда врач ударяет молоточком по сухожилию около коленной чашечки пациента, он, изучая сухожильный коленный рефлекс, судит о функциональном состоянии обусловленного участка спинного мозга.

Но спинной мозг не автономная рефлекторная система. Его работа протекает под постоянным контролем головного мозга. Спинной мозг связан с различными отделами головного мозга посредством проводящих путей - длинных пучков нервных волокон белого вещества. По одним путям сигналы с периферии передаются вверх, к головному мозгу, по другим - команды идут сверху вниз, из головного в спинной мозг.

Сложные координированные движения организует и направляет вся центральная нервная система. Тончайшие движения рук пианиста, отточенные па балерины - все это результат действия потока импульсов от головного мозга в спинной, а от него - к мышцам. Итак, другая важнейшая функция спинного мозга – проводниковая.

Большая роль в этом принадлежит промежуточным, или вставочным, нейронам. Они не только передают сигналы с чувствительных нейронов на двигательные. Вставочные клетки принимают и перерабатывают информацию от различных мышц и участков кожи. На них сигналы с периферии встречаются также с импульсами из головного мозга. Вставочные клетки посылают возбуждающие сигналы к определенным группам двигательных клеток и одновременно тормозят активность других групп. Благодаря этому и становится возможной тончайшая координация движений человека.

53 Нейроны спинного мозга, их функции.

13 млн. нейронов:

3% - мотонейроны;

97% - вставочные нейроны.

Альфа-мотонейроны располагаются в передних рогах спинного мозга и иннервируют интрафузальные мышечные волокна.

Альфа1-мотонейроны иннервируют белые или быстрые мышечные волокна.

Альфа2-мотонейроны иннервируют медленные красные волокна.

Гамма-нейроны иннервируют интрафузальные мышечные волокна «мышечные веретена», которые по сути являются проприорецепторами мышц, следовательно, они участвуют в регуляции и обеспечении тонуса скелетной мускулатуры.

Передние рога спинного мозга представлены телами нейронов.

Задние рога – вставочные нейроны (возбуждают и тормозят).

Серое вещество состоит из аксонов этих нейронов, они образуют восходящие и нисходящие проводящие пути.

Особенности нейронной организации спинного мозга

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество рас­пределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога (рис. 4.9).

 Задние рога выполняют главным образом сенсорные фун­кции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.

В передних рогах находятся нейроны, дающие свои ак­соны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

Начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, в боковых рогах серого вещества располагаются нейроны симпатического, а в крестцовых — пара­симпатического отдела автономной (вегетативной) нервной систе­мы.

Спинной мозг человека содержит около 13 млн. нейронов, из них 3% — мотонейроны, а 97% — вставочные. Функциональ­но нейроны спинного мозга можно разделить на 4 основные группы. 

1)     мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки; 

2)     интернейроны — нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3)     симпатические,  парасимпатические  нейроны  расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков; 

4)     ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами. 

В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1—2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга — эта сеть образует так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.

Средняя часть серого вещества спинного мозга содержит пре­имущественно короткоаксонные веретенообразные клетки (проме­жуточные нейроны), выполняющие связующую функцию между симметричными отделами сегмента, между клетками его передних и задних рогов.

Мотонейроны. Аксон мотонейрона своими терминалами иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Чем меньше мышечных волокон иннервирует один аксон (т. е. чем меньше количественно мотонейронная единица), тем более дифференцированные, точные движения выполняет мышца (см. раздел 2.4).

Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов одного пула различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздра­жения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение мышцы.

Мотонейроны спинного мозга функционально делят на α- и γ-нейроны.

α-Мотонейроны образуют прямые связи с чувствительными пу­тями, идущими от экстрафузальных волокон мышечного веретена, имеют до 20 000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10—20 в секунду), γ-Мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежу­точные нейроны. Сокращение интрафузального мышечного волокна не приводит к сокращению мышцы, но повышает частоту разрядов импульсов, идущих от рецепторов волокна в спинной мозг. Эти нейроны обладают высокой частотой импульсации (до 200 в се­кунду).

Интернейроны. Эти промежуточные нейроны, генерирующие им­пульсы с частотй до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функ­цией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения. Воз­буждение интернейронов, связанных с моторными клетками, ока­зывает тормозящее влияние на мышцы-антагонисты.

Нейроны симпатического отдела автономной системы. Распо­ложены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3—5 в секунду).

Нейроны парасимпатического отдела автономной системы. Локализуются в сакральном отделе спинного мозга и являются фоновоактивными.

В случаях раздражения и поражения задних корешков спинного мозга наблюдаются «стреляющие», опоясывающие боли на уровне метамера пораженного сегмента, снижение чувствительности всех видов, утрата или снижение рефлексов, вызываемых с метамера тела, который передает информацию в пораженный корешок.

В случаях изолированного поражения заднего рога утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняется, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной — прямо в задний столб и по проводящим путям поднимаются вверх.

Вследствие того, что аксоны вторых нейронов болевой и темпе­ратурной чувствительности идут на противоположную сторону через переднюю серую спайку спинного мозга, при повреждении этой спайки на теле симметрично утрачивается болевая и температурная чувствительность.

Поражение переднего рога и переднего корешка спинного моз­га приводит к параличу мышц, которые теряют тонус, атрофи­руются, при этом исчезают рефлексы, связанные с пораженным сегментом.

В случае поражения боковых рогов спинного мозга исчезают кожные сосудистые рефлексы, нарушается потоотделение, наблю­даются трофические изменения кожи, ногтей. При одностороннем поражении парасимпатического отдела автономной нервной системы на уровне крестцовых отделов спинного мозга нарушений дефекации и мочеиспускания не наблюдается, так как корковая иннервация этих центров является двусторонней.

Двигательные, или мотонейроны (3%):

- Альфа-мотонейроны;

- Физические (быстрые);

- Тонические (медленные).

Вставочные, или интернейроны (97%):

- Гамма-мотонейроны;

- Собственные специальные;

- Проекционные.

По чувствительным волокнам в спинной мозг поступает мультисенсорная информация (температурная, болевая, тактильная, мышечно-составная, химическая) с кожным и мышечным рецептором туловища и конечностей, а также от внутренних органов, брюшной, грудной и тазовой областей.

Двигательные (эфферентные, моторные) волокна несут «команды» от мотонейронов к скелетным мышцам. В составе передних корешков спинной мозг покидает также аксоны вегетативных нейронов.

Спинномозговые нервы обракуют сплетения - шейное, плечевое, поясничное и крестовое. Каждый нерв обеспечивает чувствительную и двигательную иннервацию определенного сегмента тела и конечностей, поэтому при повреждении какого-либо сегмента мозга утрачиваются чувствительность и движения мышц соответствующей области тела. На поперечных срезах спинного мозга серое вещество, образованное телами нейронов, располагается вокруг спинномозгового канала в виде «бабочки» или «рогов». Мотонейроны занимают вентральные (передние) рога, в задних (дорсальных) рогах и средней части расположены промежуточные нейроны

(вставочные, или интернейроны). Через них мотонейроны связаны с чувствительными нейронами, а также с нейронами высших центров головного мозга. В боковых рогах серого вещества, выраженных в грудных и первых поясничных сегментах, находятся нейроны вегетативной нервной системы.

54 Проводящие пути спинного мозга, их функции.

Восходящие (чувствительные):

1. Клиновидный пучок Бурдаха – проходит в задних столбах и несет информацию в кору больших полушарий головного мозга; транспортирует туда осознаваемую проприоцептивную импульсацию от верхней части туловища и рук.

2. Тонкий пучок Голля – проходит в задних столбах и несет осознаваемую проприоцептивную импульсацию от нижней части туловища и ног.

3. Задний спиномозжечковый путь Флексига – тоже самое.

4. Латеральный спиноталамический путь – проводит болевую и температурную чувствительность.

5. Передний спиноталамический путь – проводит тактильную чувствительность (чувства прикосновения и давления).

6. Передний спиномозжечковый путь Говерса – проходит дублированная проприоцептивная импульсация.

Нисходящие (двигательные):

1. Латеральный кортикоспинальный путь – проводит импульсацию к скелетной мускулатуре и команды произвольных движений.

2. Передний кортикоспинальный – тоже самое.

3. Руброспинальный путь Монакова - проводит импульсацию обеспечивающую поддержание тонуса скелетной мускулатуры. Красное ядро – флексорная система.

4. Ретикулоспинальный путь - проводит импульсацию поддерживающую тонус скелетной мускулатуры, и, кроме того, импульсация регулирует состояние спинальных вегетативных центров.

5. Вестибулоспинальный путь - проводит импульсацию обеспечивающую поддержание позы и равновесия.

6. Тектоспинальный (текто – покрышка) путь – реализует команды рефлексов четверохолмия, импульсация обеспечивает реализацию двигательных и слуховых рефлексов.

55 Рефлексы спинного мозга, методы их исследования.

Рефлекторна функция – закон распределения мозговых корешков (Белла-Можанди): задние – чувствительные, передние – двигательные.

Спинальные соматические рефлексы:

1. Проприоцептивные = сухожильные = миотатические:

- сгибательно-локтевой рефлекс – с двуглавой мышцы плеча, центр в С4-С5.

- разгибательно-локтевой рефлекс – с трёглавой мышцы плеча, центр в С6-С7.

- коленный рефлекс – четырехглавая мышца бедра, центр в L2-L4.

- ахиллов рефлекс – икроножная мышца, центр в S1-S2.

2. Кожно-мышечные:

- брюшные рефлексы:

Верхний брюшной Th8-Th9.

Средний брюшной Th9-Th10.

Нижний брюшной Th10-Th12.

- крематорный рефлекс (мошоночный) - центр в L1-L2.

- подошвенный - центр в S1-S2.

- анальный - центр в S4-S5.

3. Шейные – познотонические рефлексы:

- наклон головы вперед – увеличивает тонус сгибателей рук и разгибателей ног.

- наклон головы назад – увеличивает тонус разгибателей рук и сгибателей ног.

- наклон головы вправо – увеличивает тонус разгибателей на стороне поворотов.

4. Ритмические рефлексы (циклические):

- сопровождаются многочисленными повторными сгибаниями и разгибаниями конечностей (чесание, потирание, шагание, плавание).

Рефлекс с сухожилия двуглавой мышцы вызывается ударом молоточка по сухожилию мышцы. Исследование рефлекса с сухожилия двуглавой мышцы возможно в двух положениях (рис. 2 и 3). В ответ происходит сгибание руки в локтевом суставе. В осуществлении этого рефлекса принимают участие волокна мышечно-кожного нерва, сегменты CV—CVI спинного мозга. Рефлекс с сухожилия трехглавой мышцы вызывается ударом молоточка по сухожилию этой мышцы. Рука исследуемого согнута в локтевом суставе и поддерживается рукой исследующего (рис. 4). В ответ на удар молоточка происходит разгибание в локтевом суставе. В осуществлении рефлекса принимают участие волокна лучевого нерва, сегменты CVI — CVII спинного мозга. Коленный рефлекс вызывается ударом молоточка по сухожилию четырехглавой мышцы бедра ниже коленной чашечки. В ответ на удар молоточка происходит разгибание голени. Исследование коленного рефлекса возможно   в   двух положениях: 1) исследуемый лежит на спине, исследующий подводит левую руку под колени исследуемого, ноги при этом   согнуты   под   тупым   углом; 2) исследуемый сидит, опираясь носками о пол, ноги согнуты в коленных суставах под тупым углом (рис. 5). У детей часто коленные рефлексы вызываются с трудом, в связи с тем что дети их тормозят. В таких случаях применяются следующие методы: 1) метод Ендрашика — в момент исследования коленного рефлекса исследуемый с силой тянет согнутые и сцепленные пальцы рук, при этом считает, рассказывает и т. д.; 2) метод Новинского — исследуемый с силой растягивает резиновое кольцо; 3) метод Монтемеццо — исследуемый производит сильный наклон туловища вперед. В осуществлении рефлекса принимают участие волокна бедренного нерва, сегменты LII— LIV спинного мозга. Рефлекс с сухожилия двуглавой мышцы бедра вызывается ударом молоточка по сухожилию двуглавой мышцы бедра в положении больного на противоположном боку. В ответ происходит сокращение двуглавой мышцы и сгибание голени. Уровень рефлекторной дуги SI спинного мозга. Ахиллов рефлекс вызывается ударом молоточка по ахиллову сухожилию. В ответ на удар молоточком происходит подошвенное сгибание стопы. Исследование ахиллова рефлекса возможно в двух положениях: 1) исследуемый лежит на спине, исследующий отводит стопу кнаружи, при этом нога несколько согнута в коленном и тазобедренном суставах; 2) исследуемый лежит на спине, исследующий берет ногу больного за стопу и сгибает ногу в тазобедренном и коленном суставах (рис. 7); 3) исследуемый становится на стул так, чтобы обе стопы свободно свисали (рис. 6). В осуществлении рефлекса принимают участие волокна седалищного нерва, сегменты SI — SII спинного мозга.

56 Роль спинного мозга в организации и регуляции движений.

Мышечный тонус является по своей природе рефлекторным актом. Для его возникновения достаточна рефлекторная деятельность спинного мозга. При длительном растяжении мышц в поле силы тяжести возникает постоянное раздражение их проприорецепторов, потоки импульсов от которых проходят по толстым афферентным волокнам в спинной мозг, где передаются непосредственно (безучастия вставочных нейронов) на альфа-мотонейроны передних рогов и вызывают тоническое напряжение мышц. Такие двухнейронные (или моносинаптические) рефлекторные дуги лежат в основе тонических сухожильных (с рецепторов сухожилий) и миотатических рефлексов на растяжение (с рецепторов мышечных веретен). Это рефлексы активного противодействия мышцы ее растяжению. В произвольной двигательной деятельности человека иногда требуется подавление этих рефлексов, например, при выполнении шпагата. Степень тонического напряжения мышцы зависит от частоты импульсов, посылаемых к ней альфа-мотонейронами. Однако, потоки этих импульсов могут регулироваться вышележащими этажами нервной системы, в частности, неспецифическими отделами ствола мозга с помощью так называемой гамма -- регуляции. Разряды гамма-мотонейронов спинного мозга под влиянием ретикулярной формации повышают чувствительность рецепторов мышечных веретен. В результате при той же длине мышцы увеличивается поток импульсов от рецепторов к альфа-мотонейронам и далее к мышце, повышая ее тонус.

Спинной мозг обеспечивает протекание многих элементарных двигательных рефлексов, включение которых в сложные двигательные акты и регуляция по мощности, пространственной ориентации и моменту включения осуществляется вышележащими отделами головного мозга под контролем коры больших полушарий.

РОЛЬ СПИННОГО МОЗГА И ПОДКОРКОВЫХ ОТДЕЛОВ ЦНС В РЕГУЛЯЦИИ ДВИЖЕНИЙ

Спинной мозг осуществляет ряд элементарных двигательных рефлексов: рефлексы на растяжение, кожные сгиба тельные рефлексы, разгиба тельные рефлексы, перекрестные рефлексы и др.

Элементарные двигательные рефлексы включаются в более сложные двигательные акты — регуляцию деятельности мышц-антагонистов, ритмических и шагательных рефлексов, лежащих в основе локомоций и других движений.

Для сгибательного движения в суставе необходимо не только сокращение мышц-сгибателей, но и одновременное расслабление мышц-разгибателей. При этом в мотонейронах мышц-сгибателей возникает процесс возбуждения, а в мотонейронах мышц-разгибателей — торможение. При разгибании сустава, наоборот, тормозятся центры сгибателей и возбуждаются центры разгибателей. Такие координационные взаимоотношения между спинальными моторными центрами названы реципрокной иннервацией мышц-антагонистов. Однако реципрокные отношения между центрами мышц-антагонистов в необходимых ситуациях могут сменяться одновременным их возбуждением.

Составной частью различных сложных двигательных действий, как произвольных, так и непроизвольных, часто являются ритмические рефлексы. Это одна из форм древних и относительно простых рефлексов. Они особенно выражены при выполнении циклической работы, включаются в шагательные рефлексы. Основные механизмы шагательных движений заложены в спинном мозге. Специальные нейроны и многочисленные взаимосвязи внутри спинного мозга обеспечивают последовательную активность различных мышц конечностей, согласование ритма и фаз движений, приспособление движений к нагрузке на мышцы. В среднем мозгу расположены нейроны «локомоторной области», которые включают этот механизм и регулируют мощность работы мышц, обеспечивая примитивную форму локомоций — без ориентации в пространстве.

57 Функциональное строение продолговатого мозга.

Функции ствола мозга связаны с наличием в продолговатом мозге ядер черепных нервов (12 пар).

Двигательные функции ядер ( по сути является частью эфферентных отделов):

12 пара – подъязычный нерв – отвечает за жевание, артикуляцию, движения языка.

11 пара – добавочный нерв – отвечает за сокращение грудинно-ключично-сосцевидной и трапециевидной мышц, а также наклон головы в сторону, поворот головы, подъем верхнего плечевого пояса.

9-10 пара – языкоглоточный и блуждающий – отвечают за сокращения мышц мягкого неба, глотки, надгортанника, гортани, голосовых связок; обеспечивают рефлексы глотания, рвоты, чихания, кашля, фонации.

7 пара – лицевой – обеспечивает сокращение мимических и жевательных мышц, кроме того, отвечает за сокращение стремечковой мышцы среднего уха.

6 пара - отводящий – сокращение латеральной мышцы глаза (поворот глаза кнаружи).

5 пара – тройничный – обеспечивает сокращение жевательной мускулатуры, височной и крылонебной мышц, а также отвечает за сокращение мышцы, натягивающей барабанную перепонку.

4 пара – блоковый – сокращение верхней косой мышцы глаза (поворот вниз и кнаружи глазного яблока).

3 пара – глазодвигательный – сокращение прямой верхней мышцы глаза (поворот глазного яблока вверх); сокращение прямой внутренней мышцы глаза (поворот глазного яблока внутрь); сокращение прямой нижней мышцы (поворот глазного яблока книзу); сокращение мышцы, поднимающей верхнее веко.

Несколько ядер черепных нервов, которые кооперируются с нервами спинного мозга и объединяются в единый комплекс посредством ретикулярной фармации спинного мозга (акт жевания, сосания, глотания, чихания, кашля, дыхания).

Продолговатый мозг, так же как и спинной, выполняет две функции - рефлекторную и проводниковую. Из продолговатого мозга и моста выходят восемь пар черепных нервов (с V по XII) и он, так же как и спинной мозг, имеет прямую чувствительную и двигательную связь с периферией. По чувствительным волокнам он получает импульсы - информацию от рецепторов кожи головы, слизистых оболочек глаз, носа, рта (включая вкусовые рецепторы), от органа слуха, вестибулярного аппарата (органа равновесия), от рецепторов гортани, трахеи, легких, а также от интерорецепторов сердечно-сосудистой системы и системы пищеварения.

Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Рефлекторную деятельность продолговатого мозга можно наблюдать на бульбарной кошке, т. е. кошке, у которой произведена перерезка ствола мозга выше продолговатого. Рефлекторная деятельность такой кошки сложна и многообразна. Через продолговатый мозг осуществляются следующие рефлексы:

Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота.

Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез.

Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов.

В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких.

В продолговатом мозге расположены вестибулярные ядра.

От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного обеспечирают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное вопреки силам земного притяжения удерживает позу своего тела, как правило, теменем кверху.

Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры - дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью. Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

58 Ретикулярная формация ствола мозга, ее функции.

Ретикулярная формация – сетчатое образование, образованное нейронами, расположенными в центральных отделах ствола мозга. Нейроны могут располагаться как диффузно, так и в виде ядер.

Они имеют длинные маловетвящиеся дендриты и хорошо ветвящийся аксон. Это позволяет нейронам ретикулярной фармации устанавливать связи с близлежащими нейронами (может устанавливать 25000 связей). Они также принимают импульсы, идущие от сенсорных путей, т. е. они являются полимодальными и имеют большие рецептивные поля, характеризующиеся тонической активностью примерно 5-10 импульсов в секунду. Также они обладают высокой чувствительностью к некоторым веществам содержащимся в крови (адреналин, углекислый газ), чувствительны к лекарственным средствам (аминозин, барбитуровая группа).

Ретикулярная формация имеет многочисленные связи со структурами цнс. Сюда поступают импульсы из коры мозжечка. Посылает команды к таламусу, гипоталамусу, в мозжечок, базальные ядра стереопалидарной системы, по ним в кору головного мозга.

Информация от температурных и болевых рецепторов, от сенсорной и других зон коры больших полушарий головного мозга, импульсация от мозжечка, выходят эфферентные влияния и проецируются в спинном мозге, информация идет к неспецифическим ядрам таламуса и полосатому телу, имеются выходы к мозжечку и ядрам покрышки моста. Это количество связей приводит ретикулярную формацию к положения центрального коллектора.

Функции ретикулярной формации:

- 1 группа – соматические двигательные функции;

- 2 группа – сенсорные функции (восходящие влияния на головной мозг);

- 3 группа – вегетативные функции.

Соматические функции формации проявляются в её координирующем влиянии на ядра черепных нервов, а также в нисходящих влияниях на моторные спинальные центры и активность мышечных рецепторов (модулирующая активность способна повышаться и снижаться).

Восходящее влияние ретикулярной формации на головной мозг активирующее и тормозное.

Важное функциональное значение имеет ретикулярная, или сетевидная формация ствола мозга, которая развивается в связи с возникновением системы блуждающего, вестибулярного и тройничного нервов.

Сетевидная формация состоит из различных по величине и форме нервных клеток, а также из густой сети нервных волокон, идущих в различных направлениях и располагающихся главным образом вблизи желудочковой системы. Ретикулярной формации придается основное значение в корково-подкорковых взаимоотношениях. Она располагается в средних этажах продолговатого мозга, гипоталамусе, сером веществе покрышки среднего мозга, варолиевом мосту.

К сетевидной формации подходят многочисленные коллатерали от всех афферентных (чувствительных) систем. Через эти коллатерали любое раздражение с периферии, направляясь в определенные участки коры по специфическим путям нервной системы, достигает и сетчатой формации. Неспецифические восходящие системы (т.е. пути от ретикулярной формации) обеспечивают возбуждение коры больших полушарий, активацию ее деятельности (см. рис. 24).

Наряду с восходящими неспецифическими системами, в стволе мозга проходят нисходящие неспецифические системы, которые воздействуют на спинальные рефлекторные механизмы.

Ретикулярная формация тесно связана с корой больших полушарий (особенно с лимбической системой). Благодаря этому формируется функциональная связь между высшими отделами центральной нервной системы и стволом головного мозга. Эта система получила название лимбико-ретикулярного комплекса или лимбико-ретикулярной оси. Этот сложный структурно-функциональный комплекс обеспечивает интеграцию важнейших функций, в осуществлении которых участвуют различные отделы головного мозга.

Известно, что бодрствующее состояние коры обеспечивается специфическими и неспецифическими системами. Реакция активации поддерживается постоянным поступлением импульсов с рецепторов слухового, зрительного, обонятельного, вкусового и чувствительного анализаторов. Эти раздражения передаются по специфическим афферентным путям в различные участки коры. От всех поступающих в зрительный бугор, а затем в кору больших полушарий афферентных путей отходят многочисленные коллатерали к ретикулярной формации, чем и обеспечивается ее восходящая активирующая деятельность.

В свою очередь ретикулярная формация получает импульсы из мозжечка, подкорковых ядер, лимбической системы, которые обеспечивают эмоционально-адаптивные поведенческие реакции, мотивационные формы поведения. У животных подкорковые образования и лимбическая система имеют ведущее значение в выполнении жизненно важных потребностей организма для его выживания в окружающей среде. У человека в связи с доминированием коры деятельность глубинных структур мозга (подкорковых образований, лимбической системы, ретикулярной формации) в большей степени, чем у животного, подчинена коре больших полушарий. Ретикулярной формации принадлежит важная роль в регуляции мышечного тонуса. Регуляция мышечного тонуса проводится по двум видам ретикулспинальных путей. Быстро проводящий ретикулоспинальный путь регулирует быстрые движения; медленно проводящий ретикулоспинальный путь – медленные тонические движения.

При перерезке ствола мозга выше продолговатого мозга понижается активность нейронов, оказывающих тормозящее влияние на мотонейроны спинного мозга, что приводит к резкому повышению тонуса скелетной мускулатуры.

Ретикулярная формация - это продолговатая структура в стволе мозга. Она представляет собой важный пункт на пути восходящей неспецифической соматосенсорной чувствительности. К ретикулярной формации приходят также пути от всех других афферентных черепных нервов, т.е. практически от всех органов чувств. Дополнительная афферентация поступает от многих других отделов головного мозга - от моторных областей коры и сенсорных областей коры, от таламуса и гипоталамуса.

Имеется также множество эфферентных связей нисходящие к спинному мозгу и восходящие через неспецифические таламические ядра к коре головного мозга, гипоталамусу и лимбической системе.

Большинство нейронов образует синапсы с двумя - тремя афферентами разного происхождения, такая полисенсорная конвергенция характерна для нейронов ретикулярной формации.

Другими их свойствами являются большие рецептивные поля поверхности тела, часто билатеральные, длительный латентный период ответа на периферическую стимуляцию (вследствие мультисинаптического проведения), слабая воспроизводимость реакции.

Функции ретикулярной формации изучены не полностью. Считается, что она участвует в следующих процессах:

в регуляция уровня сознания путем воздействия на активность корковых нейронов, например, участие в цикле сон – бодорствование.

в придании аффективно-эмоциональной окраски сенсорным стимулам, в том числе болевым сигналам, идущим по переднебоковому канатику, путем проведения афферентной информации к лимбической системе.

в вегетативных регулирующих функциях, в том числе во многих жизненно важных рефлексах, при которых должны взаимно координироваться разные афферентные и эфферентные системы.

в позных и целенаправленных движениях в качестве важного компонента двигательных центров ствола мозга.

59 Роль ствола мозга в организации и регуляции движений.

Разгибательная экстензерная система по путям:

(продолговатый мозг является продолжением спинного мозга)

- вестибулоспинальный путь – его импульсация повышает тонус разгибателей конечностей, туловища и шеи.

- медиальный ретикулоспинальный путь – повышает тонус разгибателей туловища и проксимальных отделов конечностей.

Сгибательная флексорная система:

- латеральный ретикулоспинальный путь – повышает тонус сгибателей конечностей.

- руброспинальный путь – повышает тонус сгибателей туловища и конечностей.

Флексорная и экстензерная системы на уровне ствола мозга находятся в реципрокных отношениях.

Децеребрационная ригидность (описана Шеррингтоном в 1906 году) – возникает при перерезке между продолговатым и средним мозгом, проявляется у человека резким повышением тонуса разгибателей нижних конечностей, туловища и шеи.

Механизмом ригидности является выключение активирующих влияний красных ядер на сгибатели, что относительно увеличивает влияние вестибулярных ядер на разгибатели, выключается тормозное влияние коры и мозжечка на вестибулярные ядра.

Основную роль в развитии ригидности играют гамма-мотонейроны , поэтому, чтобы снять ригидность, нужно максимально перерезать задние корешки.

Установочные рефлексы ствола мозга:

- направлены на сохранение нормального положения тела и равновесия.

- классифицированы и описаны Магнусом в 1924 году (рефлексы Магнуса-Клейна).