Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
задачи_кинематики_манипулятора.doc
Скачиваний:
92
Добавлен:
10.11.2019
Размер:
3.31 Mб
Скачать

3. Обзор кинематических параметров описания углового и пространственного движения манипулятора

В

Рис. 1

большинстве случаев звенья совершают в пространстве сложное движение. Движение каждого звена можно рассмотреть в отдельности как сложное движение твердого тела (ТТ). Из механики известно, что в случае произвольного пространственного движения ТТ, его рассматривают состоящим из двух составляющих: поступательного движения некоторой точки, принятой за полюс и вращательного движения тела вокруг оси.

Пусть неподвижная система координат, а система координат, жестко связанная с телом (рис.1). В этом случае для описания сложного движения достаточно использовать шесть кинематических параметров, например, для описания поступательной части движения можно задать три декартовых координаты и их изменения во времени, а для описания вращательной составляющей – можно задать некоторые три угловые координаты.

Поступательная часть движения описывается гораздо проще, чем вращательная. Для описания вращательной части движения еще в прошлом веке были введено множество методов. Наиболее используемыми среди них до последнего времени остаются либо углы Эйлера, либо направляющие косинусы. Однако в последнее время в связи с развитием космонавтики, авиации, робототехники для описания движения твердого тела стали применять и другие параметры, которые в некоторых случаях обладают существенными преимуществами.

3.1. Параметры Эйлера, Крылова, направляющие косинусы. Матрицы преобразования 44

Параметры Эйлера представляют собой три кинематических угловых параметра поворота с помощью которых тело может быть переведено из любого начального в любое конечное положение, по схеме приведенной на рис. 2.

Здесь последовательность вращений на углы Эйлера, совершаемых вокруг соответствующих координатных осей переводит систему координат I (неподвижную систему координат) в систему координат E (систему координат, связанную с телом). Первый поворот осуществляется вокруг оси на угол вращения (ротации) , второй поворот - вокруг оси на угол нутации  и третий поворот - вокруг на угол прецессии .

Рис. 2. Последовательность поворотов на углы Эйлера

Рис. 3. Последовательность поворотов на углы Крылова

Последовательность осуществляемых поворотов можно описать посредством соответствующих матричных выражений. В результате получим матрицу преобразования В, задающую переход от базиса I в базис E, которая получается в виде произведения трех матриц последовательных поворотов (2):

.

(2)

Результирующая матрица, полученная путем последовательного перемножения матриц элементарных поворотов, имеет следующий вид

()

Таким образом, для перехода из начального положения в конечное можно использовать матричное соотношение (4)

(4)

Существуют также и другие схемы поворотов, в частности углы Крылова. Последовательность трех поворотов на углы Крылова, совершаемых вокруг координатных осей преобразуемого базиса представлена на рис. 3. Здесь осуществляются повороты на угол курса (рысканья) , угол тангажа , угол крена , соответственно вокруг оси , вокруг оси и вокруг оси . Матрица преобразования B, которая получается путем перемножения трех матриц плоских вращений (5), имеет вид (6)

(5)

(6)

Достоинство последних параметров заключается в симметричности, при этом малому отклонению объекта от исходного положения всегда соответствуют малые значения углов .

Для задания углового положения и ориентации ТТ в качестве кинематических параметров часто используют направляющие косинусы, представляющие собой скалярное произведение единичных ортов соответствующих осей.

Направляющих косинусов всего 9, хотя для описания вращательного движения достаточно трех параметров. Главный недостаток направляющих косинусов состоит в вычислительной избыточности. К достоинствам можно отнести возможность использования хорошо разработанного аппарата матричной алгебры, а также симметричность структур в уравнениях кинематики и отсутствие особых точек.

В компактной форме направляющие косинусы записываются в виде матрицы, размерностью 33, с помощью которой легко установить связь между двумя координатными системами, повернутыми друг относительно друга (7).

(7)

Для описания пространственного движения используют матрицу преобразования однородных координат 44 вида (8), определяющую расположение связанной системы координат относительно неподвижной системы.

,

(8)

где верхняя левая подматрица размерностью 33 представляет собой матрицу поворота, а верхняя правая подматрица размерностью 31 – вектор смещения.

Таким образом, координаты точки, заданные в неподвижной системе координат относительно связанной можно определить, используя выражение (9)

(9)

Матрицы однородных преобразований применяются в методе взаимосвязанного представления координат Денавита – Хартенберга, суть которого состоит в следующем. Манипулятор представляет собой, как правило, цепь последовательно соединенных звеньев, каждое их которых совершает либо вращательное, либо поступательное движение, т.е. относительное движение соседних звеньев определяется одним изменяющимся параметром. С каждым, из подвижных звеньев связывают систему координат, причем базовую (неподвижную) связывают обычно с основанием манипулятора. Далее составляются так называемые матрицы перехода от одной системы координат к соседней ближайшей. Перемножая последовательно полученные матрицы можно получить матрицу, связывающую системы координат двух соседних звеньев, и в последствии систему координат основание с системой координат любого другого звена.

Системы координат выбираются таким образом, чтобы число элементарных перемещений при в совмещении соседних систем равнялось четырем, причем один из параметров представляет обобщенную координату, а остальные конструктивные константы. Элементарные перемещения производятся в следующей последовательности:

  1. поворот вокруг оси на некоторый угол до тех пор, пока оси и не станут параллельными;

  2. перенос на величину вдоль оси до тех пор, пока оси и не окажутся на одной прямой;

  3. перенос вдоль оси до совмещения начала координат;

  4. вращение вокруг оси до полного совмещения осей.

Каждая из матриц элементарных перемещений представляет собой матрицу однородных преобразований 44, состоящую из блока направляющих косинусов (вращательная часть) и вектора, отвечающего за поступательное движение. В результате матрица перехода для двух соседних звеньев имеет вид (10,11).

(10)

где - блок матрицы направляющих косинусов, между соответствующими осями базовой O и конечной N системами координат, - вектор, заданный однородными координатами.

,

.

(11)

Данный метод отличается высокой универсальностью, легко реализуется для любых кинематических схем, однако содержит избыточное число вычислений.