Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПГС.doc
Скачиваний:
12
Добавлен:
11.11.2019
Размер:
10.65 Mб
Скачать

Unit 8 Tunnel Planning

  1. Introduction

1.1Read the text title and hypothesize what the text is about. Write down your hypothesis.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

1.2 What do you know concerning this issue? List your ideas in the table left column “I know”.

I know

I have learnt

1.3If you know answers to these questions write them down in the space given after each question.

1

When did modern construction of tunnels start?

2

What does a tunnel construction depend on?

3

How many principal techniques do workers use to advance a tunnel?

4

How are tunnels classified according to their setting?

5

Who invented the first tunnel shield?

6

What does tunneling through hard rock generally involve?

7

When is the cut-and-cover method used?

1.4Circle in the list the words and expressions you know. Write down their translation in the table and calculate the percentage of your lexical competence.

1

precast concrete

9

special hazards

2

to pump out

10

soft ground

3

weak beds

11

workspace

4

subway

12

constant threat

5

to implement

13

to place explosives

6

vertical shafts

14

circular cross section

7

heading tunnel

15

tedious process

8

concrete lining

16

tunnel-boring machine

Since the dawn of civilization, people have been building tunnels for accessing tombs or underground quarries, or in the hill slopes for allowing the flow of water from porous rocks. Romans were skilled tunnel builders, who made several kilometers long underground passages using the work of slaves.

Modern construction of tunnels started in the 1760's in England, when channels were constructed for inner transport. If hills were in the way, the top could be overcome by modifying it in platforms and building of locks, so that ships reached the next level.

How a tunnel is built depends heavily on the material through which it must pass. Tunneling through soft ground, for instance, requires very different techniques than tunneling through hard rock or soft rock, such as shale, chalk or sandstone. Tunneling underwater, the most challenging of all environments, demands a unique approach that would be impossible or impractical to implement above ground.

That's why planning is so important to a successful tunnel project. Engineers conduct a thorough geologic analysis to determine the type of material they will be tunneling through and assess the relative risks of different locations. They consider many factors, but some of the most important include:

  • Soil and rock types

  • Weak beds and zones, including faults and shear zones

  • Groundwater, including flow pattern and pressure

  • Special hazards, such as heat, gas and fault lines

Often, a single tunnel will pass through more than one type of material or encounter multiple hazards. Good planning allows engineers to plan for these variations right from the beginning, decreasing the likelihood of an unexpected delay in the middle of the project.

Once engineers have analyzed the material that the tunnel will pass through and have developed an overall excavation plan, construction can begin. The tunnel engineers' term for building a tunnel is driving, and advancing the passageway can be a long, tedious process that requires blasting, boring and digging by hand.

Workers generally use two basic techniques to advance a tunnel. In the full-face method, they excavate the entire diameter of the tunnel at the same time. This is most suitable for tunnels passing through strong ground or for building smaller tunnels. The second technique, shown in the diagram below, is the top-heading-and-bench method. In this technique, workers dig a smaller tunnel known as a heading. Once the top heading has advanced some distance into the rock, workers begin excavating immediately below the floor of the top heading; this is a bench. One advantage of the top-heading-and-bench method is that engineers can use the heading tunnel to gauge the stability of the rock before moving forward with the project.

Notice that the diagram shows tunneling taking place from both sides. Tunnels through mountains or underwater are usually worked from the two opposite ends, or faces, of the passage. In long tunnels, vertical shafts may be dug at intervals to excavate from more than two points.

Now let's look more specifically at how tunnels are excavated in each of the four primary environments: soft ground, hard rock, soft rock and underwater.

Based on the setting, tunnels can be divided into three major types:

Soft-ground tunnels. They are typically shallow and are often used as subways, water-supply systems, and sewers. Because the ground is soft, a support structure, called a tunnel shield, must be used at the head of the tunnel to prevent it from collapsing.

Workers dig soft-ground tunnels through clay, silt, sand, gravel or mud. In this type of tunnel, stand-up time -- how long the ground will safely stand by itself at the point of excavation -- is of paramount importance. Because stand-up time is generally short when tunneling through soft ground, cave-ins are a constant threat. To prevent this from happening, engineers use a special piece of equipment called a shield. A shield is an iron or steel cylinder literally pushed into the soft soil. It carves a perfectly round hole and supports the surrounding earth while workers remove debris and install a permanent lining made of cast iron or precast concrete. When the workers complete a section, jacks push the shield forward and they repeat the process.

Marc Brunel, a French engineer, invented the first tunnel shield in 1825 to excavate the Thames Tunnel in London, England. Brunel's shield comprised 12 connected frames, protected on the top and sides by heavy plates called staves. He divided each frame into three workspaces, or cells, where diggers could work safely. A wall of short timbers, or breasting boards, separated each cell from the face of the tunnel. A digger would remove a breasting board, carve out three or four inches of clay and replace the board. When all of the diggers in all of the cells had completed this process on one section, powerful screw jacks pushed the shield forward.

In 1874, Peter M. Barlow and James Henry Greathead improved on Brunel's design by constructing a circular shield lined with cast-iron segments. They first used the newly-designed shield to excavate a second tunnel under the Thames for pedestrian traffic. Then, in 1874, the shield was used to help excavate the London Underground, the world's first subway. Greathead further refined the shield design by adding compressed air pressure inside the tunnel. When air pressure inside the tunnel exceeded water pressure outside, the water stayed out.

Soft ground TBMs. In soft ground, there are three main types of TBMs: Earth Pressure Balance Machines (EPB), Slurry Shield (SS) and open-face type. Earth Pressure Balance Machines are used in soft ground with less than 7 bar of pressure.

Rock tunnels. They require little or no extra support during construction and are often used as railways or roadways through mountains. Years ago, engineers were forced to blast through mountains with dynamite. Today they rely on enormous rock-chewing contraptions called tunnel boring machines.

Tunneling through hard rock almost always involves blasting. Workers use a scaffold, called a jumbo, to place explosives quickly and safely. The jumbo moves to the face of the tunnel, and drills mounted to the jumbo make several holes in the rock. The depth of the holes can vary depending on the type of rock, but a typical hole is about 10 feet deep and only a few inches in diameter. Next, workers pack explosives into the holes, evacuate the tunnel and detonate the charges. After vacuuming out the noxious fumes created during the explosion, workers can enter and begin carrying out the debris, known as muck, using carts. Then they repeat the process, which advances the tunnel slowly through the rock.

Fire-setting is an alternative to blasting. In this technique, the tunnel wall is heated with fire, and then cooled with water. The rapid expansion and contraction caused by the sudden temperature change causes large chunks of rock to break off.

Most tunnels pass through rock that contains breaks or pockets of fractured rock, so engineers must add additional support in the form of bolts, sprayed concrete or rings of steel beams. In most cases, they add a permanent concrete lining.

S oft rock TBMs. Tunneling through soft rock and tunneling underground require different approaches. Blasting in soft, firm rock such as shale or limestone is difficult to control. Instead, engineers use tunnel-boring machines (TBMs), or moles, to create the tunnel.

A tunnel boring machine (TBM) also known as a "mole", is a machine used to excavate tunnels with a circular cross section through a variety of soil and rock strata. They can bore through anything from hard rock to sand.

Hard rock TBMs. In hard rock, either shielded or open-type TBMs can be used. All types of hard rock TBMs excavate rock using disc cutters mounted in the cutter head.

Underwater tunnels. They are particularly tricky to construct, as water must be held back while the tunnel is being built. Early engineers used pressurized excavation chambers to prevent water from gushing into tunnels. Today, prefabricated tunnel segments can be floated into position, sunk, and attached to other sections.

Tunnels built across the bottoms of rivers, bays and other bodies of water use the cut-and-cover method, which involves immersing a tube in a trench and covering it with material to keep the tube in place.

Construction begins by dredging a trench in the riverbed or ocean floor. Long, prefabricated tube sections, made of steel or concrete and sealed to keep out water, are floated to the site and sunk in the prepared trench. Then divers connect the sections and remove the seals. Any excess water is pumped out, and the entire tunnel is covered with backfill.

The British end of the Channel Tunnel at Cheriton near Folkestone in Kent

The tunnel connecting England and France -- known as the Channel Tunnel, the Euro Tunnel or Chunnel -- runs beneath the English Channel through 32 miles of soft, chalky earth. Although it's one of the longest tunnels in the world, it took just three years to excavate, thanks to state-of-the-art TBMs.