Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Анализ инвестиций в основные средства(Сушко).doc
Скачиваний:
111
Добавлен:
14.11.2019
Размер:
2.32 Mб
Скачать

Факторный анализ. Метод главных компонент

В стремлении предельно точно описать исследуемую область аналитики часто отбирают большое число независимых переменных (p). В этом случае может возникнуть серьезная ошибка: несколько описывающих переменных могут характеризовать одну и ту же сторону зависимой переменной и, как следствие, высоко коррелировать между собой. Мультиколлинеарность независимых переменных серьезно искажает результаты исследования, поэтому от нее следует избавляться.

Метод главных компонент (как упрощенная модель факторного анализа, поскольку при этом методе не используются индивидуальные факторы, описывающие только одну переменную xi) позволяет объединить влияние высоко коррелированных переменных в один фактор, характеризующий зависимую переменную с одной единственной стороны. В результате анализа, осуществленного по методу главных компонент, мы добьемся сжатия информации до необходимых размеров, описания зависимой переменной m (m<p) числом обобщенных факторов, линейно зависящих от исходных признаков, а также выявления взаимосвязи наблюдаемых признаков с полученными факторами. Далее мы построим уравнение регрессии на главных компонентах и сравним результаты с построенными ранее уравнениями регрессии. Достоинством главных компонент, полученных в результате анализа, является их некоррелируемость между собой.

Для начала необходимо решить, сколько факторов необходимо выделить в данном исследовании. В рамках метода главных компонент первый главный фактор описывает наибольших процент дисперсии независимых переменных, далее – по убывающей. Таким образом, каждая следующая главная компонента, выделенная последовательно, объясняет все меньшую долю изменчивости факторов xi. Задача исследователя состоит в том, чтобы определить, когда изменчивость становится действительно малой и случайной. Другими словами – сколько главных компонент необходимо выбрать для дальнейшего анализа.

Существует несколько методов рационального выделения необходимого числа факторов. Наиболее используемый из них – критерий Кайзера. Согласно этому критерию, отбираются только те факторы, собственные значения которых больше 1. Таким образом, фактор, который не объясняет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, опускается.

Проанализируем Таблицу 19, построенную в SPSS:

Таблица 19. Полная объясненная дисперсия

Компонента

Начальные собственные значения

Суммы квадратов нагрузок вращения

Итого

% Дисперсии

Кумулятивный %

Итого

% Дисперсии

Кумулятивный %

dimension0

1

5,442

90,700

90,700

3,315

55,246

55,246

2

,457

7,616

98,316

2,304

38,396

93,641

3

,082

1,372

99,688

,360

6,005

99,646

4

,009

,153

99,841

,011

,176

99,823

5

,007

,115

99,956

,006

,107

99,930

6

,003

,044

100,000

,004

,070

100,000

Метод выделения: Анализ главных компонент.

Как видно из Таблицы 19, в данном исследовании переменные xi высоко коррелирут между собой (это также выявлено ранее и видно из Таблицы 5 «Парные коэффициенты корреляции»), а следовательно, характеризуют зависимую переменную Y практически с одной стороны: изначально первая главная компонента объясняет 90,7 % дисперсии xi, и только собственное значение, соответствующее первой главной компоненте, больше 1. Конечно, это является недостатком отбора данных, однако в процессе самого отбора этот недостаток не был очевиден.

Анализ в пакете SPSS позволяет самостоятельно выбрать число главных компонент. Выберем число 6 – равное количеству независимых переменных. Второй столбец Таблицы 19 показывает суммы квадратов нагрузок вращения, именно по этим результатам и сделаем вывод о числе факторов. Собственные значения, соответствующие первым двум главным компонентам, больше 1 (55,246% и 38,396% соответственно), поэтому, согласно методу Кайзера, выделим 2 наиболее значимые главные компоненты.

Второй метод выделения необходимого числа факторов – критерий «каменистой осыпи». Согласно этому методу, собственные значения представляются в виде простого графика, и выбирается такое место на графике, где убывание собственных значений слева направо максимально замедляется:

Рисунок 3. Критерий "каменистой осыпи"

Как видно на Рисунке 3, убывание собственных значений замедляется уже со второй компоненты, однако постоянная скорость убывания (очень маленькая) начинается лишь с третьей компоненты. Следовательно, для дальнейшего анализа будут отобраны первые две главные компоненты. Это умозаключение согласуется с выводом, полученным при использовании метода Кайзера. Таким образом, окончательно выбираются первые две последовательно полученные главные компоненты.

После выделения главных компонент, которые будут использоваться в дальнейшем анализе, необходимо определить корреляцию исходных переменных xi c полученными факторами и, исходя из этого, дать названия компонентам. Для анализа воспользуемся матрицей факторных нагрузок А, элементы которой являются коэффициентами корреляции факторов с исходными независимыми переменными:

Таблица 20. Матрица факторных нагрузок

Матрица компонентa

Компонента

1

2

3

4

5

6

X1

,956

-,273

,084

,037

-,049

,015

X2

,986

-,138

,035

-,080

,006

,013

X3

,963

-,260

,034

,031

,060

-,010

X4

,977

,203

,052

-,009

-,023

-,040

X5

,966

,016

-,258

,008

-,008

,002

X6

,861

,504

,060

,018

,016

,023

Метод выделения: Анализ методом главных компонент.

a. Извлеченных компонент: 6

В данном случае интерпретация коэффициентов корреляции затруднена, следовательно, довольно сложно дать названия первым двум главным компонентам. Поэтому далее воспользуемся методом ортогонального поворота системы координат Варимакс, целью которого является поворот факторов так, чтобы выбрать простейшую для интерпретации факторную структуру:

Таблица 21. Коэффициенты интерпретации

Матрица повернутых компонентa

Компонента

1

2

3

4

5

6

X1

,911

,384

,137

-,021

,055

,015

X2

,841

,498

,190

,097

,000

,007

X3

,900

,390

,183

-,016

-,058

-,002

X4

,622

,761

,174

,022

,009

,060

X5

,678

,564

,472

,007

,001

,005

X6

,348

,927

,139

,001

-,004

-,016

Метод выделения: Анализ методом главных компонент.

Метод вращения: Варимакс с нормализацией Кайзера.

a. Вращение сошлось за 4 итераций.

Из Таблицы 21 видно, что первая главная компонента больше всего связана с переменными x1, x2, x3; а вторая – с переменными x4, x5, x6. Таким образом, можно сделать вывод, что объем инвестиций в основные средства в регионе (переменная Y) зависит от двух факторов:

- объема собственных и заемных средств, поступивших в предприятия региона за период (первая компонента, z1);

- а также от интенсивности вложений предприятий региона в финансовые активы и количества иностранного капитала в регионе (вторая компонента, z2).

Далее построим диаграмму рассеивания по первым двум главным компонентам:

Рисунок 4. Диаграмма рассеивания

Данная диаграмма демонстрирует неутешительные результаты. Еще в самом начале исследования мы старались подобрать данные так, чтобы результирующая переменная Y была распределена нормально, и нам практически это удалось. Законы распределения независимых переменных были достаточно далеки от нормального, однако мы старались максимально приблизить их к нормальному закону (соответствующим образом подобрать данные). Рисунок 4 показывает, что первоначальная гипотеза о близости закона распределения независимых переменных к нормальному закону не подтверждается: форма облака должна напоминать эллипс, в центре объекты должны быть расположены более густо, нежели чем по краям. Стоит заметить, что сделать многомерную выборку, в которой все переменные распределены по нормальному закону – задача, выполнимая с огромным трудом (более того, не всегда имеющая решение). Однако к этой цели нужно стремиться: тогда результаты анализа будут более значимыми и понятными при интерпретации. К сожалению, в нашем случае, когда проделана большая часть работы по анализу собранных данных, менять выборку достаточно затруднительно. Но далее, в последующих работах, стоит более серьезно подходить в выборке независимых переменных и максимально приближать закон их распределения к нормальному.

Последним этапом анализа методом главных компонент является построение уравнения регрессии на главные компоненты (в данном случае – на первую и вторую главные компоненты).

При помощи SPSS рассчитаем параметры регрессионной модели:

Таблица 22. Параметры уравнения регресии на главные компоненты

Модель

Нестандартизованные коэффициенты

Стандартизованные коэффициенты

t

Знч.

B

Стд. Ошибка

Бета

1

(Константа)

47414,184

1354,505

35,005

,001

Z1

26940,937

1366,763

,916

19,711

,001

Z2

6267,159

1366,763

,213

4,585

,001

Уравнение регрессии примет вид:

y=47 414,184 + 0,916*z1+0,213*z2,

(b0) (b1) (b2)

т. о. b0=47 414,184 показывает точку пересечения прямой регрессии с осью результирующего показателя;

b1= 0,916 – при увеличении значения фактора z1 на 1 ожидаемое среднее значение суммы объема инвестиций в основные средства увеличится на 0,916;

b2= 0,213 – при увеличении значения фактора z2 на 1 ожидаемое среднее значение суммы объема инвестиций в основные средства увеличится на 0,213.

В данном случае значение tкр («альфа»=0,001, «ню»=53) = 3,46 меньше tнабл для всех коэффициентов «бета». Следовательно, все коэффициенты значимы.

Далее оценим качество построенной модели:

Таблица 23. Качество регрессионной модели на главные компоненты

Модель

R

R-квадрат

Скорректированный R-квадрат

Стд. ошибка оценки

dimension0

1

,941a

,885

,881

10136,18468

a. Предикторы: (конст) Z1, Z2

b. Зависимая переменная: Y

В Таблице 24 отражены показатели, которые характеризуют качество построенной модели, а именно: R – множественный к-т корреляции – говорит о том, какая доля дисперсии Y объясняется вариацией Z; R^2 – к-т детерминации – показывает долю объяснённой дисперсии отклонений Y от её среднего значения. Стандартная ошибка оценки характеризует ошибку построенной модели. Сравним эти показатели с аналогичными показателями степенной регрессионной модели (ее качество оказалось выше качества линейной модели, поэтому сравниваем именно со степенной):

Таблица 24. Качество степенной регрессионной модели

Модель

R

R-Квадрат

Скорректированный R-квадрат

Стд. ошибка оценки

(d)

,991(d)

,981

,980

,10909

Так, множественный к-т корреляции R и к-т детерминации R^2 в степенной модели несколько выше, чем в модели главных компонент. Кроме того, стандартная ошибка модели главных компонент НАМНОГО выше, чем в степенной модели. Поэтому качество степенной регрессионной модели выше, чем регрессионной модели, построенной на главных компонентах.

Проведем верификацию регрессионной модели главных компонент, т. е. проанализируем ее значимость. Проверим гипотезу о незначимости модели, рассчитаем F(набл.) = 204,784 (рассчитано в SPSS), F(крит) (0,001; 2; 53)=7,76. F(набл)>F(крит), следовательно, гипотеза о незначимости модели отвергается. Модель значима.

Итак, в результате проведения компонентного анализа, было выяснено, что из отобранных независимых переменных xi можно выделить 2 главные компоненты – z1 и z2, причем на z1 в большей степени влияют переменные x1, x2, x3, а на z2 – x4, x5, x6. Уравнение регрессии, построенное на главных компонентах, оказалось значимым, хотя и уступает по качеству степенному уравнению регрессии. Согласно уравнению регрессии на главные компоненты, Y положительно зависит как от Z1, так и от Z2. Однако изначальная мультиколлинеарность переменных xi и то, что они не распределены по нормальному закону распределения, может искажать результаты построенной модели и делать ее менее значимой.